
 Using subsystem MT2 for complete mass determinations in decay chains with missing

energy at hadron colliders

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP03(2009)143

(http://iopscience.iop.org/1126-6708/2009/03/143)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 10:36

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/03
http://iopscience.iop.org/1126-6708/2009/03/143/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
3
(
2
0
0
9
)
1
4
3

Published by IOP Publishing for SISSA

Received: November 4, 2008

Revised: February 9, 2009

Accepted: February 28, 2009

Published: March 30, 2009

Using subsystem MT2 for complete mass

determinations in decay chains with missing energy at

hadron colliders

Michael Burns,a Kyoungchul Kong,b Konstantin T. Matcheva and Myeonghun Parka

aPhysics Department, University of Florida, Gainesville, FL 32611, U.S.A.
bTheoretical Physics Department, Fermilab, Batavia, IL 60510, U.S.A.

E-mail: burns@phys.ufl.edu, kckong@fnal.gov, matchev@phys.ufl.edu,

ishaed@phys.ufl.edu

Abstract: We propose to use the MT2 concept to measure the masses of all particles in

SUSY-like events with two unobservable, identical particles. To this end we generalize the

usual notion of MT2 and define a new M
(n,p,c)
T2 variable, which can be applied to various

subsystem topologies, as well as the full event topology. We derive analytic formulas for

its endpoint M
(n,p,c)
T2,max as a function of the unknown test mass M̃c of the final particle in

the subchain and the transverse momentum pT due to radiation from the initial state.

We show that the endpoint functions M
(n,p,c)
T2,max(M̃c, pT ) may exhibit three different types of

kinks and discuss the origin of each type. We prove that the subsystem M
(n,p,c)
T2 variables by

themselves already yield a sufficient number of measurements for a complete determination

of the mass spectrum (including the overall mass scale). As an illustration, we consider

the simple case of a decay chain with up to three heavy particles, X2 → X1 → X0,

which is rather problematic for all other mass measurement methods. We propose three

different MT2-based methods, each of which allows a complete determination of the masses

of particles X0, X1 and X2. The first method only uses M
(n,p,c)
T2 endpoint measurements

at a single fixed value of the test mass M̃c. In the second method the unknown mass

spectrum is fitted to one or more endpoint functions M
(n,p,c)
T2,max(M̃c, pT ) exhibiting a kink.

The third method is hybrid, combining MT2 endpoints with measurements of kinematic

edges in invariant mass distributions. As a practical application of our methods, we show

that the dilepton W+W− and tt̄ samples at the Tevatron can be used for an independent

determination of the masses of the top quark, the W boson and the neutrino, without any

prior assumptions.
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1 Introduction

The ongoing Run II of the Fermilab Tevatron and the now commencing run of the Large

Hadron Collider (LHC) at CERN are on the hunt for new physics beyond the Standard

Model (BSM) at the TeV scale. Arguably the most compelling phenomenological evidence

for BSM particles and interactions at the TeV scale is provided by the dark matter prob-

lem [1], whose solution requires new particles and interactions BSM. A typical particle dark

matter candidate does not interact in the detector and can only manifest itself as missing

energy. The dark matter problem therefore greatly motivates the study of missing energy

signatures at the Tevatron and the LHC [2].
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Figure 1. The generic event topology under consideration in this paper. The particles Xi, 1 ≤ i ≤
n, are new BSM particles which appear as promptly decaying, on-shell intermediate resonances.

The particles xi are the corresponding SM decay products, which are all visible in the detector,

i.e. we assume that there are no neutrinos among them. ISR stands for generic initial state radiation

with total transverse momentum ~pT . X0 is a BSM particle which is invisible in the detector. The

integer n counts the total number of intermediate BSM particles in each chain, so that the total

number of BSM particles in each chain is n + 1. For simplicity, in this paper we shall only consider

symmetric events, in which the two decay chains are identical. The generalization of our methods

to asymmetric decay chains is straightforward.

The long lifetime of the dark matter particle is typically ensured by some new exact

symmetry,1 under which the SM particles are neutral, while the BSM particles are charged.

This setup implies that the new particles will be pair-produced, and each of the two cascades

will terminate in the dark matter candidate, giving rise to missing energy in the detector.

(A generic example of this topology is shown in figure 1.) Since the energies and momenta

of the final two invisible particles X0 are not measured, one cannot directly apply resonance

mass reconstruction techniques.2 This represents a significant challenge for determining the

masses Mi of the new particles Xi. In recognition of this problem, there has been a recent

resurgence of interest in the development of different methods for mass measurements in

cascade decays with missing energy [12–48]. Most of these techniques fall into one of the

following three categories:

• I. Endpoint methods. They rely on the kinematic endpoints [12, 14–16, 20, 21, 25]

or shapes [22, 23, 46] of various invariant mass distributions constructed out of the

visible (SM) decay products xi in the cascade chain.

• II. Polynomial methods. Here one attempts exact event reconstruction using

the measured momenta of the SM particles and the measured missing transverse

momentum [18, 19, 27, 38, 39].

1Some well known examples are: R-parity in supersymmetry [3], KK parity in models with extra dimen-

sions [4–7], T -parity in Little Higgs models [8, 9], U -parity [10, 11] etc.
2See, however, section 2.2.
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• III. MT2 methods. These methods explore the transverse invariant mass variable

MT2 originally proposed in [13] and later used and developed in [17, 24, 26, 28, 37,

40, 41, 45]. Recently it was shown that under certain circumstances, the endpoint of

the MT2 distribution, when considered as a function of the unknown test mass M̃0

of the lightest new particle X0, exhibits a kink and the true mass M0 of X0, i.e. at

M̃0 = M0 [29–32, 36].

One could also combine two or more of these techniques into a hybrid method, e.g. a mixed

polynomial and endpoint method [34], a mixed MT2 and endpoint method [33, 43], or a

mixed MT2 and polynomial method [47, 48]. In section 2 we shall describe in detail each

of these three basic approaches I - III. We shall then contrast them to each other and

discuss their pros and cons. In particular, we shall concentrate on their applicability as a

function of the length of the decay chain, i.e. the number n of intermediate resonances in

figure 1. We shall find that for sufficiently long decay chains, namely n ≥ 3, each method

I - III by itself is able to completely determine the unknown particle spectrum, at least

as a matter of principle. Therefore, if Nature is so kind to us as to present us with such a

long decay chain, it does not really matter which of the three methods above we decide to

use — sooner or later, success will be guaranteed with each one.

However, if the decay chain happens to be relatively short, i.e. n ≤ 2, neither method

I, nor method II, nor a hybrid combination of I and II will be able to completely determine

the unknown particle mass spectrum. In contrast, method III by itself can still provide a

sufficient number of measurements for a complete determination of the mass spectrum of

the new particles. We argue that in order to achieve this, the conventional MT2 variable

needs to be promoted to a more general quantity M
(n,p,c)
T2 , which can be applied not only to

the whole event, but also to a particular sub-chain starting at Xp and ending in Xc [41, 45].

We present the basic steps for this generalization in section 3, where we also introduce our

conventions and notation. Then in section 4 we concentrate on the problematic case of

n ≤ 2 and discuss what type of M
(n,p,c)
T2 measurements are available in that case. We then

show that the newly defined M
(n,p,c)
T2 may also exhibit a kink in the graph of its endpoint

M
(n,p,c)
T2,max as a function of the test mass M̃c. In order to be able to properly interpret this

kink, we derive analytic expressions for the function M
(n,p,c)
T2,max(M̃c, pT ), including the effect

of initial state radiation (ISR) with some arbitrary transverse momentum pT (see figure 1).

In all cases, a kink would always appear at M̃c = Mc:





∂M
(n,p,c)
T2,max(M̃c, pT )

∂M̃c





M̃c=Mc−ǫ

6=





∂M
(n,p,c)
T2,max(M̃c, pT )

∂M̃c





M̃c=Mc+ǫ

, (1.1)

and the value of M
(n,p,c)
T2,max at that point reveals the true mass Mp of the mother particle Xp:

M
(n,p,c)
T2,max(Mc, pT ) = Mp . (1.2)

However, there may be up to three different reasons for the origin of the kink (1.1). For

example, in the case of M
(1,1,0)
T2,max(M̃0, pT ) and M

(2,2,1)
T2,max(M̃1, pT ) with non-zero pT , the kink

– 3 –
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arises due to recoils against the ISR jets, as explained in [30, 31] (see sections 4.1 and 4.2

below). On the other hand, in the case of M
(2,2,0)
T2,max(M̃0, pT = 0), the kink is due to the

variable mass of the composite system of SM particles {x1x2}, as already observed in

refs. [29, 32] (see section 4.3 below). Finally, for M
(2,1,0)
T2,max(M̃0, pT = 0), we encounter a new

type of kink, which arises due to the decay of a heavier particle (in this case X2) upstream

(see section 4.4).

In section 5 we propose three different methods for measuring the masses of all the

particles in the problematic case of an n = 2 decay chain. With the first method, presented

in section 5.1, we always consider a fixed value of the test mass (for convenience we choose

it to be zero), and perform a sufficient number of M
(n,p,c)
T2 endpoint measurements for

various n, p and c. In our second method, described in section 5.2, we choose a suitable

M
(n,p,c)
T2 variable whose endpoint M

(n,p,c)
T2,max exhibits a kink, and then fit for the function

M
(n,p,c)
T2,max(M̃c, pT ). Our last method, presented in section 5.3, is hybrid, in the sense that

we use combined information from the measured endpoints of some MT2 distributions, as

well as the measured endpoints of certain invariant mass distributions. Neither of our three

methods relies on reconstructing the actual momentum of each missing particle.

All of our discussion throughout the paper will be completely model-independent and

can be applied to any BSM scenario, including supersymmetry, extra dimensions, little

Higgs theory etc. In section 5, however, we shall use a specific example in order to illus-

trate each of our three proposed methods. Instead of considering a decay chain of some

BSM model, we chose to select an example which is already present in the Tevatron data,

and will soon be tested at the LHC as well: the dilepton event samples from top quark

pair production and from W -pair production. Those two dilepton samples satisfy all of

our assumptions, and would be a perfect testing ground for any new ideas about mass

measurements in missing energy events from new physics. In section 5 we will show that

using any one of our three MT2-based mass measurement methods, one can in principle

determine the mass of each of the three particles: top quark, W -boson, and neutrino, inde-

pendently and in a completely model-independent fashion. section 6 contains a summary

and a discussion of our main results. In appendix A we collect all relevant formulas for the

endpoint functions M
(n,p,c)
T2,max(M̃c, pT ).

2 Mass measurement methods in missing energy events

Let us now discuss in some detail each of the three basic methods I - III for mass mea-

surements in missing energy events. The basic topology is shown in figure 1, where the

particles Xi, 0 ≤ i ≤ n, (denoted in red) are new BSM particles, and the particles xi,

1 ≤ i ≤ n, (denoted in black) are the corresponding SM decay products. ISR stands for

generic initial state radiation with total transverse momentum ~pT . X0 is a dark matter

candidate which is invisible in the detector. For simplicity, in this paper we shall make

two assumptions, each of which can be easily relaxed without significantly changing our

conclusions. First, we shall assume that the intermediate particles Xi, 1 ≤ i ≤ n, are all

– 4 –
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on-shell, i.e. their masses Mi ≡ MXi
obey the hierarchy

Mn > Mn−1 > . . . > M1 > M0 . (2.1)

Consequently, all decays along our decay chain are two-body, i.e. each SM decay product

xi is a single particle of mass mi ≡ mxi
. In this paper we will also only concentrate on the

commonly encountered case where xi is either a lepton, photon or jet, i.e. massless:

mi = 0, i = 1, . . . , n . (2.2)

Second, we shall also assume that our events are symmetric, i.e. the two decay chains are

identical. Again, this assumption can be easily dropped and one could consider asymmetric

events as well (see, for example, ref. [45]). These assumptions are made only for simplicity.

All of our subsequent discussion can be easily generalized to include off-shell decays, simply

by promoting some of the visible SM particles xi to composite particles with variable mass.

For example, appendix A already contains some results for an off-shell case, while the study

of asymmetric events is postponed for future work [49].

We shall use the integer n to count the total number of intermediate on-shell BSM

particles in each chain. Then, the total number of new BSM particles in the decay chain is

n+1. With those preliminaries, we are ready to discuss each of the three different methods

for mass measurements in missing energy events.

2.1 Endpoint method

With this method, one forms the invariant mass distributions Mxi1
xi2

...xik
of various groups

of k SM decay products xi, where the number k in principle can range from 2 to n.

Each such distribution exhibits an upper kinematic endpoint, which can be related to the

underlying unknown masses Mi. If one makes a sufficient number of independent upper

endpoint measurements, the system of equations giving the kinematic endpoints Ej in

terms of the masses Mi

Ej = Ej(M0, . . . ,Mn), j = 0, . . . , n (2.3)

can be solved for the masses Mi, although on some occasions the solution may not be

unique — see, e.g. [50, 51].

Clearly, the method will be fully successful only if the number of measurements Nm is

no less than the number of unknown parameters Np. For the decay chain of figure 1, the

number of unknown mass parameters Np is simply the total number of BSM particles:

Np = n + 1 . (2.4)

How many measurements Nm are available with this method? The answer to this question

depends on the length of the decay chain. It is easy to see that, if n = 1, there are no

endpoint measurements at all; if n = 2, there is a single measurement of the endpoint of

the Mx1x2 distribution, etc. In general, for an arbitrary fixed n, the number of different

invariant mass distributions Mxi1
xi2

...xik
that one can form and study, is equal to the

– 5 –
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number of ways in which we can select a group of at least two objects from a set of n

objects, and is given by

Nm = 2n − (n + 1) . (2.5)

Strictly speaking, eq. (2.5) only gives an upper bound on the number of independent

upper endpoints in the invariant mass distributions. Indeed, there are certain cases where

not all of the upper kinematic endpoints are independent. For example, consider the

familiar case of a squark decay chain in supersymmetry: X3 = q̃, X2 = χ̃0
2, X1 = ℓ̃ and

X0 = χ̃0
1. The SM decay products consist of a quark jet q and two leptons: ℓ+ and

ℓ−. It is well known that in some regions of parameter space the upper endpoint of the

Mqℓℓ distribution does not provide an independent measurement, since it can be related

to the upper endpoints of the Mℓ+ℓ− and Mqℓ(high) ≡ max{Mqℓ+ ,Mqℓ−} distributions [20].

Fortunately, one can use additional measurements from the lower endpoints of suitably

restricted invariant mass distributions, e.g. Mqll(θ> π
2
) [14]. We see that the precise count

of the number of measurements Nm available in the endpoint method is somewhat model-

dependent, but nevertheless, the estimate (2.5) is sufficient to make our main point below.

From eqs. (2.4) and (2.5) it readily follows that the number of undetermined parameters

with this method is

Np − Nm = 2(n + 1) − 2n . (2.6)

The dependence of this quantity on the length of the decay chain is plotted in figure 2 with

red open circles, connected with red line segments. The yellow-shaded region in the figure

is where Nm ≥ Np, so that we have a sufficient number of measurements for a complete

determination of the heavy particle spectrum. Conversely, whenever a symbol appears

inside the white region, where Nm < Np, there is only partial information about the mass

spectrum and the spectrum cannot be fully determined.

Figure 2 reveals that the endpoint method cannot succeed unless n ≥ 3. This conclu-

sion has already been confirmed by numerous studies of various low-energy SUSY models,

where one considers a decay chain of sufficient length: n = 3 as in the squark example

mentioned above, or n = 4 as for a gluino chain [21]. On the other hand, if n = 1 or

n = 2, with this method we are unable to pin down all of the new particle masses, even as

a matter of principle. These are exactly the cases where the additional information from

mass measurements at future lepton colliders has been seen as extremely useful [52].

2.2 Polynomial method

The basic idea behind the method is to use all of the available experimental information in

each event, and enforce a sufficient number of constraints, which would allow to actually

solve for the unknown momenta of the missing particles X0. Before we analyze this method

in more detail, let us introduce some of our notations and conventions. We shall use

lowercase letters to denote various quantities relating to the SM particles xi, 1 ≤ i ≤ n.

At the same time, we shall use a superscript (k) to denote whether a particular quantity

belongs to the upper (k = 1) or lower (k = 2) decay chain in figure 1. For example, the 4-

momentum of the SM particle xi in the k-th chain will be denoted as p
(k)
i , the corresponding

transverse momentum will be ~p
(k)
iT , while the mass of xi will simply be mi. On the other

– 6 –
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Figure 2. The dependence of the number of undetermined parameters Np − Nm as a function of

the number n of intermediate heavy resonances in the decay chains of figure 1, for various mass

determination methods: MT2 method (green, open squares), endpoint method (red, open circles),

polynomial method for Nev = 2 (blue, × symbols), or a hybrid method which is a combination

of the latter two methods (magenta, ⊗ symbols). Within the yellow-shaded region the number of

unknowns Np does not exceed the number of measurements Nm for the corresponding method, and

the mass spectrum can be completely determined.

hand, uppercase letters will denote quantities relating to the BSM particles Xi, 0 ≤ i ≤ n.

Thus the 4-momentum of the BSM particle Xi appearing in the k-th chain is P
(k)
i , the

corresponding transverse momentum is ~P
(k)
iT , and the mass is Mi. One should keep in mind

that for SM particles the index i runs from 1 to n, while for BSM particles i runs from

0 to n.

In order to apply the polynomial method, one uses the experimentally measured 4-

momenta p
(k)
i as well as the missing transverse momentum ~pT,miss in the event. Then, one

imposes the mass shell constraints for the intermediate BSM particles Xi and tries to solve

the resulting system of equations for the 8 unknown components of the 4-momenta P
(k)
0

of the missing particles X0. Including the n + 1 unknown masses Mi, this amounts to a

total of

Np = 8 + (n + 1) = n + 9 (2.7)

unknown parameters. How many measurements (constraints) are present in this case?

First, there is a total of 2(n + 1) mass-shell conditions: one for each BSM particle Xi in

each of the two decay chains in figure 1

M2
i =

(

P
(1)
i

)2
=
(

P
(2)
i

)2
, i = 0, 1, . . . , n . (2.8)

Using energy and momentum conservation

P
(k)
i = P

(k)
0 +

i
∑

j=1

p
(k)
j , k = 1, 2 , (2.9)

– 7 –
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these constraints can be rewritten in terms of the unknown variables P
(k)
0 :

M2
i =



P
(1)
0 +

i
∑

j=1

p
(1)
j





2

=



P
(2)
0 +

i
∑

j=1

p
(2)
j





2

, i = 0, 1, . . . , n . (2.10)

Furthermore, the measurement of the missing transverse momentum ~pT,miss provides two

additional constraints
~P

(1)
0T + ~P

(2)
0T = ~pT,miss (2.11)

on the unknown transverse momentum components ~P
(k)
0T . Therefore, the total number of

measurements is

Nm = 2(n + 1) + 2 = 2n + 4 (2.12)

and the number of undetermined parameters for any given event is readily obtained

from (2.7) and (2.12)

Np − Nm = 5 − n . (2.13)

However, one might do better than this, by combining the information from two or more

events [18, 19]. For example, consider another event of the same type. Since the n + 1

unknown masses were already counted in eq. (2.7), the second event introduces only 8 new

parameters (the 4-momenta of the two X0 particles in the second event), bringing up the

total number of unknowns in the two events to

Np = 8 + 8 + (n + 1) = n + 17 . (2.14)

At the same time, the constraints (2.10) and (2.11) are still valid for the second event,

which results in 2n + 4 additional constraints. This brings the total number of constraints

to

Nm = (2n + 4) + (2n + 4) = 4n + 8 . (2.15)

Subtracting (2.14) and (2.15), we get

Np − Nm = 9 − 3n . (2.16)

Comparing our previous result (2.13) with (2.16), we see that the latter decreases much

faster with n, therefore, when using the polynomial method, combining information from

two different events is beneficial for large n (in this example, for n ≥ 3).

Following the same logic, one can generalize this parameter counting to the case where

the polynomial method is applied for sets of Nev different events at a time. The number

of unknown parameters is

Np = n + 1 + 8Nev , (2.17)

the number of constraints is

Nm = (2n + 4)Nev , (2.18)

and therefore, the number of undetermined parameters is given by

Np − Nm = n + 1 − 2(n − 2)Nev . (2.19)

– 8 –
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For Nev = 1 and Nev = 2 this equation reduces to (2.13) and (2.16), respectively. What is

the optimal number of events Nev for the polynomial method? The answer can be readily

obtained from eq. (2.19), where Nev enters the last term on the right-hand side. If this

term is negative, increasing Nev would decrease the number of undetermined parameters,

therefore it would be beneficial to combine information from more and more different

events. From eq. (2.19) we see that this would be case if the decay chain is sufficiently

long, i.e. n ≥ 3. On the other hand, when n = 1, considering more than one event at a

time is actually detrimental - we are adding more unknowns than constraints. In the case

of n = 2, the number of undetermined parameters Np −Nm is actually independent of Nev

and one might as well consider the simplest case of Nev = 1.

Let us now analyze how successful the polynomial method will be for different decay

chain lengths. The number of undetermined parameters (2.16) for Nev = 2 is plotted

in figure 2 with blue × symbols, connected with blue line segments. We see that the

polynomial method will be successful in determining all the masses of the BSM particles

only if n ≥ 3. For n = 1 or n = 2, there will not be enough measurements for a complete

mass determination3 and the best one can do in that case is to obtain a range of possible

values for the masses M0, M1 and M2 [27]. Recall that in the previous subsection we

reached a similar conclusion regarding the endpoint method. Therefore, we see that both

the endpoint and the polynomial methods, when used in isolation, would fail whenever the

decay chain is rather short: n = 1 or n = 2. This represents a definite problem, since there

is no guarantee that the new physics would exhibit a long (n ≥ 3) decay chain. Therefore

it is worth investigating whether there is an alternative method which would be successful

in those two cases, i.e. n ≤ 2.

One immediate idea which comes to mind is to use a hybrid method, i.e. combining

the techniques of the polynomial and endpoint methods [34]. The parameter count in

that case is very easy to do. The number of unknown parameters is the same as in the

polynomial method:

Np = n + 1 + 8Nev . (2.20)

Now, however, we need to account for the extra measurements (2.5) which are available

from the endpoint method. Therefore, the total number of measurements for a hybrid

method of this type is the sum of (2.5) and (2.18):

Nm = 2n − (n + 1) + (2n + 4)Nev . (2.21)

Subtracting (2.20) and (2.21), we get

Np − Nm = 2(n + 1) − 2n − 2(n − 2)Nev . (2.22)

In figure 2, this quantity is plotted for fixed Nev = 2 with magenta ⊗ symbols. We see

that, even though the hybrid method performs better than the individual endpoint and

polynomial methods, it still cannot solve the problem of masses for n = 2! Therefore, a

3As can be seen from the more general expression (2.19), this conclusion will not change even if we

consider arbitrarily large number of events Nev.
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different approach is needed. We shall now argue that the MT2 method might just provide

the solution to this problem in the n = 2 case. What is more, we shall show that the MT2

method can do that all by itself, without using any information derived from the endpoint

or polynomial methods.

2.3 MT2 method

Here the number of unknown parameters is still

Np = n + 1 . (2.23)

In the next section we shall prove that, once we consider the notion of subsystem M
(n,p,c)
T2 ,

the total number of MT2-type endpoint measurements is

Nm =
1

6
n(n + 1)(n + 2) . (2.24)

Then the number of undetermined parameters with this method is

Np − Nm =
1

6
(n + 1)(6 − 2n − n2) , (2.25)

which is plotted with green square symbols in figure 2. We see that for n ≤ 3, the MT2

method is by far the most powerful, and more importantly, it is the only method which is

able to handle the problematic case of n = 2!

3 Defining a subsystem MT2 variable

The idea for a subsystem MT2 was first discussed in [41] and applied in [45] for a specific

supersymmetry example (associated squark-gluino production and decay). Here we shall

generalize that concept for a completely general decay chain. For this purpose, let us redraw

figure 1 as shown in figure 3. The subsystem MT2 variable will be defined for the subchain

inside the blue (yellow-shaded) box in figure 3. Before we give a formal definition of the

subsystem MT2 variables, let us first introduce some terminology for the BSM particles

appearing in the decay chain. We shall find it convenient to distinguish the following types

of BSM particles:

• “Grandparents”. Those are the two BSM particles Xn at the very top of the decay

chains in figure 3. Since we have assumed symmetric events, the two grandparents

in each event are identical, and carry the same index n. Of course, one may relax

this assumption, and consider asymmetric events, as was done in [36, 45]. Then, the

two “grandparents” will be different, and one would simply need to keep track of two

separate grandparent indices n(1) and n(2).

• “Parents”. Those are the two BSM particles Xp at the top of the subchain used to

define the subsystem MT2 variable. In figure 3 this subchain is identified by the blue

(yellow-shaded) rectangular box. The idea behind the subsystem MT2 is simply to

apply the usual MT2 definition for the subchain inside this box. Notice that the MT2

concept usually requires the parents to be identical, therefore here we will characterize

them by a single “parent” index p.
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Figure 3. An alternative representation of figure 1, which illustrates the meaning of the subsystem

M
(n,p,c)
T2 variable defined in eq. (3.3).

• “Children”. Those are the two BSM particles Xc at the very end of the subchain

used to define the subsystem MT2 variable, as indicated by the blue (yellow-shaded)

rectangular box in figure 3. The children are also characterized by a single index

c. In general, the true mass Mc of the two children is unknown. As usual, when

calculating the value of the MT2 variable, one needs to choose a child “test” mass,

which we shall denote with a tilde, M̃c, in order to distinguish it from the true mass

Mc of Xc.

• Dark matter candidates. Those are the two stable neutral particles X0 appearing

at the very end of the cascade chain. We see that while those are the particles

responsible for the measured missing momentum in the event (see eq. (2.11)), they

are relevant for MT2 only in the special case of c = 0.

With those definitions, we are now ready to generalize the conventional MT2 defini-

tion [13, 17]. From figure 3 we see that any subchain is specified by the parent index p and

the child index c, while the total length of the whole chain (and thus the type of event)

is given by the grandparent index n. Therefore, the subsystem MT2 variable will have to

carry those three indices as well, and we shall use the notation M
(n,p,c)
T2 . In the following

we shall refer to this generalized quantity as either “subsystem” or “subchain” MT2. It is

clear that the set of three indices (n, p, c) must be ordered as follows:

n ≥ p > c ≥ 0 . (3.1)

We shall now give a formal definition of the quantity M
(n,p,c)
T2 , generalizing the original idea

of MT2 [13, 17]. The parent and child indices p and c uniquely define a subchain, within

which one can form the transverse masses M
(1)
T and M

(2)
T of the two parents:

M
(k)
T (p(k)

p , p
(k)
p−1, . . . , p

(k)
c+1,

~P
(k)
cT ; M̃c), k = 1, 2 . (3.2)

Here p
(k)
i , c + 1 ≤ i ≤ p, are the measured 4-momenta of the SM particles within the

subchain, ~P
(k)
cT are the unknown transverse momenta of the children, while M̃c is their
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unknown (test) mass. Then, the subsystem M
(n,p,c)
T2 is defined by minimizing the larger

of the two transverse masses (3.2) over the allowed values of the children’s transverse

momenta ~P
(k)
cT :

M
(n,p,c)
T2 (M̃c) = min

P2
k=1

~P
(k)
cT

=−
P2

k=1

Pn
j=c+1 ~p

(k)
jT

−~pT

{

max
{

M
(1)
T ,M

(2)
T

}}

, (3.3)

where ~pT indicates any additional transverse momentum due to initial state radiation (ISR)

(see figures 1 and 3). Notice that in this definition, the dependence on the grandparent

index n enters only through the restriction on the children’s transverse momenta ~P
(k)
cT .

Using momentum conservation in the transverse plane

2
∑

k=1

~P
(k)
0T +

2
∑

k=1

n
∑

j=1

~p
(k)
jT + ~pT = 0 , (3.4)

we can rewrite the restriction on the children’s transverse momenta ~P
(k)
cT as

2
∑

k=1

~P
(k)
cT =

2
∑

k=1

~P
(k)
0T +

2
∑

k=1

c
∑

j=1

~p
(k)
jT = ~pT,miss +

2
∑

k=1

c
∑

j=1

~p
(k)
jT , (3.5)

where in the last step we used eq. (2.11). Eq. (3.5) allows us to rewrite the subsystem

M
(n,p,c)
T2 definition (3.3) in a form which does not manifestly depend on the grandparent

index n:

M
(n,p,c)
T2 (M̃c) = min

P2
k=1

~P
(k)
cT

=~pT,miss+
P2

k=1

Pc
j=1 ~p

(k)
jT

{

max
{

M
(1)
T ,M

(2)
T

}}

. (3.6)

However, the grandparent index n is still implicitly present through the global quantity

~pT,miss, which knows about the whole event. We shall see below that the interpretation of

the experimentally observable endpoints, kinks, etc., for the so defined subsystem M
(n,p,c)
T2

quantity, does depend on the grandparent index n, which justifies our notation.

We are now in a position to compare our subsystem M
(n,p,c)
T2 quantity to the conven-

tional MT2 variable. The latter is nothing but the special case of n = p and c = 0:

MT2 ≡ M
(n,n,0)
T2 , (3.7)

i.e. the conventional MT2 is simply characterized by a single integer n, which indicates the

length of the decay chain. We see that we are generalizing the conventional MT2 variable in

two different aspects: first, we are allowing the parents Xp to be different from the particles

Xn originally produced in the event (the grandparents), and second, we are allowing the

children Xc to be different from the dark matter particles X0 appearing at the end of the

cascade chain and responsible for the missing energy. The benefits of this generalization

will become apparent in the next section, where we shall discuss the available measurements

from the different subsystem M
(n,p,c)
T2 variables.

In conclusion of this section, let us derive the result (2.24) used in section 2.3. We

count how many different subsystem M
(n,p,c)
T2 quantities (3.3) exist for a given maximum
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value n of the grandparent index. First, pick a parent index p, which can range from 1 to n.

Then, for this fixed value of p, the child index c can take a total of p values: 0 ≤ c ≤ p− 1,

while the grandparent index can take4 a total of n − p + 1 values. Therefore, the total

number of allowed combinations (n, p, c) is

n
∑

p=1

p (n − p + 1) =
1

6
n (n + 1) (n + 2) , (3.8)

in agreement with (2.24).

4 A short decay chain X2 → X1 → X0

As we already discussed in section 2, a relatively long (n ≥ 3) new physics decay chain

can be handled by a variety of mass measurement methods, and in principle a complete

determination of the mass spectrum in that case is possible at a hadron collider. We also

showed that a relatively short (n = 1 or n = 2) decay chain would present a major challenge,

and a complete mass determination might be possible only through MT2 methods. From

now on we shall therefore concentrate only on this most problematic case of n ≤ 2.

First let us summarize what types of subsystem M
(n,p,c)
T2 measurements are available

in the case of n ≤ 2. According to eq. (3.8), there exist a total of 4 different M
(n,p,c)
T2

quantities, which are illustrated in figure 4. Each M
(n,p,c)
T2 distribution would exhibit an

upper endpoint M
(n,p,c)
T2,max, whose measurement would provide one constraint on the physical

masses. In order to be able to invert and solve for the masses of the new particles in

terms of the measured endpoints, we need to know the analytical expressions relating the

endpoints M
(n,p,c)
T2,max to the physical masses Mi. In this section we summarize those relations

for each M
(n,p,c)
T2 quantity with n ≤ 2. Some of these results (e.g. portions of sections 4.1

and sections 4.3) have already appeared in the literature, and we include them here for

completeness. The discussion in sections 4.2 and sections 4.4, on the other hand, is new.

In all cases, we shall allow for the presence of an arbitrary transverse momentum pT due

to ISR. This represents a generalization of all existing results in the literature, which have

been derived in the two special cases pT = 0 [32] or pT = ∞ [31].

We shall find it convenient to write the formulas for the endpoints M
(n,p,c)
T2,max not in

terms of the actual masses, but in terms of the mass parameters

µ(n,p,c) ≡
Mn

2

(

1 − M2
c

M2
p

)

. (4.1)

The advantage of using this shorthand notation will become apparent very shortly. Notice

that not all of the µ parameters defined in (4.1) are independent. For a given maximum

4Note that different values of the grandparent index n correspond to different types of events. For

example, in order to study the M
(n1,p,c)
T2 variables for some given n1, we must look at events of Xn1

pair-

production, while in order to form the M
(n2,p,c)
T2 distributions for another value n2 < n1, we must look at

events of Xn2
pair-production. Because of the mass hierarchy (2.1), the observation of events of the former

type (Xn1
pair-production) guarantees that the collider will eventually be able to also produce events of

the latter type (Xn2
pair-production). Therefore, the relevant integer for our count is the maximum value

of n achievable at a given collider experiment.
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Figure 4. The subsystem M
(n,p,c)
T2 variables which are available for (a) n = 1 and (b) n = 2 events.

value of n, the total number of µ parameters from (4.1) is the same as the total number of

subsystem MT2 variables and is given by (2.24). All of those µ parameters are functions

of just n + 1 masses Mi, 0 ≤ i ≤ n, as indicated by eq. (2.23). Therefore, the µ parameters

must obey certain relations, whose number is given by (2.25). For example, for n ≤ 2,

we have a total of four µ parameters: µ(1,1,0), µ(2,1,0), µ(2,2,0) and µ(2,2,1), and only three

masses: M0, M1 and M2, so that there is one constraint:

µ(2,1,0)

(

µ(2,2,0) − µ(2,2,1)

)

= µ2
(1,1,0) . (4.2)

4.1 The subsystem variable M
(1,1,0)
T2

We start with the simplest case of n = 1 shown in figure 4(a). Here M
(1,1,0)
T2 is the

only possibility, and it coincides with the conventional MT2 variable, as indicated by (3.7).

Therefore, the previous results in the literature which have been derived for the conventional

MT2 variable (3.7), would still apply. In particular, in the limit of pT = 0, the upper

endpoint M
(1,1,0)
T2,max depends on the test mass M̃0 as follows [32]

M
(1,1,0)
T2,max(M̃0, pT = 0) = µ(1,1,0) +

√

µ2
(1,1,0) + M̃2

0 , (4.3)

where the parameter µ(1,1,0) is defined in terms of the physical masses M1 and M0 according

to eq. (4.1):

µ(1,1,0) ≡
M1

2

(

1 − M2
0

M2
1

)

=
M2

1 − M2
0

2M1
. (4.4)

As usual, the endpoint (4.3) can be interpreted as the mass M1 of the parent particle X1, so

that eq. (4.3) provides a relation between the masses of X0 and X1. In the early literature

on MT2, this relation had to be derived numerically, by building the MT2 distributions for

different values of the test mass M̃0, and reading off their endpoints. Nowadays, with the

work of ref. [32], the relation is known analytically, and, as seen from (4.3), is parameterized
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by a single parameter µ(1,1,0). Therefore, in order to extract the value of this parameter, we

only need to perform a single measurement, i.e. we only need to study the MT2 distribution

for one particular choice of the test mass M̃0. We shall find it convenient to choose M̃0 = 0,

in which case eqs. (4.3) and (4.4) give

M
(1,1,0)
T2,max(M̃0 = 0, pT = 0) = 2µ(1,1,0) =

M2
1 − M2

0

M1
, (4.5)

providing the required measurement of the parameter µ(1,1,0). Eq. (4.5) demonstrates the

usefulness of the MT2 concept – just a single measurement of the endpoint of the MT2

distribution for a single fixed value of the test mass M̃0 is sufficient to provide us with one

constraint among the unknown masses (M1 and M0 in this case).

Unfortunately, one single measurement (4.5) is not enough to pin down two different

masses. In order to measure both M0 and M1, without any theoretical assumptions or prej-

udice, we obviously need additional experimental input. From the general expression (4.3)

it is clear that measuring other M
(1,1,0)
T2,max endpoints, for different values of the test mass

M̃0, will not help, since we will simply be measuring the same combination of masses

µ(1,1,0) over and over again, obtaining no new information. Another possibility might be

to consider events with the next longest decay chain (n = 2), which, as advertised in the

Introduction and shown below in section 5, will be able to provide enough information for

a complete mass determination of all particles X0, X1 and X2. However, the existence

and the observation of the n = 2 decay chain is certainly not guaranteed — to begin with,

the particles X2 may not exist, or they may have too low cross-sections. It is therefore of

particular importance to ask the question whether the n = 1 process in figure 4(a) alone

can allow a determination of both M0 and M1. As shown in ref. [31], the answer to this

question, at least in principle, is “Yes”, and what is more, one can achieve this using the

very same MT2 variable M
(1,1,0)
T2 .

The key is to realize that in reality at any collider, and especially at hadron colliders like

the Tevatron and the LHC, there will be sizable contributions from initial state radiation

(ISR) with nonzero pT , where one or more jets are radiated off the initial state, before

the hard scattering interaction. (In figures 1, 3 and 4 the green ellipse represents the hard

scattering, while “ISR” stands for a generic ISR jet.). This effect leads to a drastic change

in the behavior of the M
(1,1,0)
T2,max(M̃0, pT ) function, which starts to exhibit a kink at the true

location of the child mass M̃0 = M0:





∂M
(1,1,0)
T2,max(M̃0, pT )

∂M̃0





M̃0=M0−ǫ

6=





∂M
(1,1,0)
T2,max(M̃0, pT )

∂M̃0





M̃0=M0+ǫ

, (4.6)

and furthermore, the value of M
(1,1,0)
T2,max at that point reveals the true mass of the parent

as well:

M
(1,1,0)
T2,max(M̃0 = M0, pT ) = M1 . (4.7)

This kink feature (4.6), (4.7) was observed and illustrated in ref. [31] (see their section 4.4).

We find that it can also be understood analytically, by generalizing the result (4.3) to
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account for the additional ISR transverse momentum ~pT . Recall that eq. (4.3) was derived

in ref. [32] under the assumption that the missing transverse momentum due to the two

escaping particles X0 is exactly balanced by the transverse momenta of the two visible

particles x1 used to form M
(1,1,0)
T2 :

~P
(1)
0T + ~P

(2)
0T + ~p

(1)
1T + ~p

(2)
1T = 0 . (4.8)

We may sometimes refer to this situation as a “balanced” momentum configuration.5 In

the presence of ISR with some non-zero transverse momentum ~pT , eq. (4.8) in general

ceases to be valid, and is modified to

~P
(1)
0T + ~P

(2)
0T + ~p

(1)
1T + ~p

(2)
1T = −~pT , (4.9)

in accordance with (3.4). Including the ISR effects, we find that the expression (4.3) for

the M
(1,1,0)
T2,max endpoint splits into two branches

M
(1,1,0)
T2,max(M̃0, pT ) =







F
(1,1,0)
L (M̃0, pT ) , if M̃0 ≤ M0 ,

F
(1,1,0)
R (M̃0, pT ) , if M̃0 ≥ M0 ,

(4.10)

where

F
(1,1,0)
L (M̃0, pT ) =







[

µ(1,1,0)(pT ) +

√

(

µ(1,1,0)(pT ) +
pT

2

)2
+ M̃2

0

]2

− p2
T

4







1
2

, (4.11)

F
(1,1,0)
R (M̃0, pT ) =







[

µ(1,1,0)(−pT ) +

√

(

µ(1,1,0)(−pT ) − pT

2

)2
+ M̃2

0

]2

− p2
T

4







1
2

,(4.12)

and the pT -dependent parameter µ(1,1,0)(pT ) is defined as

µ(1,1,0)(pT ) = µ(1,1,0)





√

1 +

(

pT

2M1

)2

− pT

2M1



 . (4.13)

Both branches correspond to extreme momentum configurations in which all three trans-

verse vectors ~p
(1)
1T , ~p

(2)
1T and ~pT are collinear. The difference is that the left branch F

(1,1,0)
L

corresponds to the configuration
(

~p
(1)
1T ↑↑ ~p

(2)
1T

)

↑↑ ~pT , while the right branch F
(1,1,0)
R cor-

responds to
(

~p
(1)
1T ↑↑ ~p

(2)
1T

)

↑↓ ~pT . Therefore, the two branches are simply related as

F
(1,1,0)
R (M̃0, pT ) = F

(1,1,0)
L (M̃0,−pT ). (4.14)

It is easy to verify that in the absence of ISR, (i.e. for pT = 0) our general result (4.10)

reduces to the previous formula (4.3).

5This should not be confused with the term “balanced” used for the analytic MT2 solutions discussed

in [28, 32].
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Figure 5. (a) Dependence of the M
(1,1,0)
T2,max upper kinematic endpoint (solid lines) on the value of

the test mass M̃0, for M1 = 300GeV, and M0 = 100GeV, and for different values of the transverse

momentum pT of the ISR jet, starting from pT = 0 (green line), and increasing up to pT = 3TeV in

increments of ∆pT = 100GeV, from bottom to top. The uppermost line corresponds to the limiting

case pT → ∞. The horizontal (vertical) dotted line denotes the true value of the parent (child)

mass. Solid (dashed) lines indicate true (false) endpoints. The red lines correspond to the function

F
(1,1,0)
L defined in eq. (4.11), while the blue lines correspond to the function F

(1,1,0)
R defined in

eq. (4.12). (b) The value of the kink ∆Θ(1,1,0) defined in (4.21), as a function of the dimensionless

ratios pT

M1

and M0

M1

.

Our result (4.10) for the M
(1,1,0)
T2,max upper kinematic endpoint as a function of the test

mass M̃0 is illustrated in figure 5(a). We have chosen the same mass spectrum (M0 =

100 GeV and M1 = 300 GeV) as the one used in ref. [31], so that our figure 5(a) can be

directly compared to figure 9 of ref. [31]. We consider a single ISR jet and show results for

several different values of its transverse momentum pT , starting from pT = 0 (the green

solid line) and increasing the value of pT in increments of ∆pT = 100 GeV. The uppermost

solid line corresponds to the limiting case PT → ∞. The true value of the parent (child)

mass is marked by the horizontal (vertical) dotted line. The red (blue) lines correspond

to the function F
(1,1,0)
L (F

(1,1,0)
R ). The solid portions of those lines correspond to the true

M
(1,1,0)
T2,max endpoint, while the dashed segments are simply the extension of F

(1,1,0)
L and

F
(1,1,0)
R into the “wrong” region for M̃0, giving a false endpoint.

Figure 5(a) reveals that the two branches (4.11) and (4.12) always cross at the point

(M0,M1), in agreement with eq. (4.7). Interestingly, the sharpness of the resulting kink at

M̃0 = M0 depends on the hardness of the ISR jet, as can be seen directly from (4.10). For

small pT , the kink is barely visible, and in the limit pT → 0 we obtain the old result (4.3)

for the “balanced” momentum configuration, shown with the green solid line, which does

not exhibit any kink. In the other extreme, at very large pT , we see a pronounced kink,

which has a well-defined limit as pT → ∞. Our results in this regard are in agreement with

the findings of ref. [31].
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The M
(1,1,0)
T2,max kink exhibited in eq. (4.10) and in figure 5(a) is our first, but not last,

encounter with a kink feature in an M
(n,p,c)
T2 variable. Below we shall see that the MT2

kinks are rather common phenomena, and we shall encounter at least two other kink types

by the end of section 4. Therefore, we find it convenient to quantify the sharpness of

any such kink as follows. Consider a generic subsystem M
(n,p,c)
T2 variable whose endpoint

M
(n,p,c)
T2,max(M̃c, pT ) exhibits a kink:

M
(n,p,c)
T2,max(M̃c, pT ) =







F
(n,p,c)
L (M̃c, pT ) , if M̃c ≤ Mc ,

F
(n,p,c)
R (M̃c, pT ) , if M̃c ≥ Mc .

(4.15)

The kink appears because M
(n,p,c)
T2,max(M̃c, pT ) is not given by a single function, but has two

separate branches. The first (“low”) branch applies for M̃c ≤ Mc, and is given by some

function F
(n,p,c)
L (M̃c, pT ), while the second (“high”) branch is valid for M̃c ≥ Mc, and

is given by a different function, F
(n,p,c)
R (M̃c, pT ). The function M

(n,p,c)
T2,max(M̃c, pT ) itself is

continuous and the two branches coincide at M̃c = Mc:

F
(n,p,c)
L (Mc, pT ) = F

(n,p,c)
R (Mc, pT ) , (4.16)

but their derivatives do not match:
(

∂F
(n,p,c)
L

∂M̃c

)

M̃c=Mc

6=
(

∂F
(n,p,c)
R

∂M̃c

)

M̃c=Mc

, (4.17)

leading to the appearance of the kink. Let us define the left and right slope of the

M
(n,p,c)
T2,max(M̃c, pT ) function at M̃c = Mc in terms of two angles Θ

(n,p,c)
L and Θ

(n,p,c)
R , cor-

respondingly:

tan Θ
(n,p,c)
L ≡

(

∂F
(n,p,c)
L (M̃c)

∂M̃c

)

M̃c=Mc

, (4.18)

tan Θ
(n,p,c)
R ≡

(

∂F
(n,p,c)
R (M̃c)

∂M̃c

)

M̃c=Mc

. (4.19)

Now we shall define the amount of kink as the angular difference ∆Θ(n,p,c) between the

two branches:

∆Θ(n,p,c) ≡ Θ
(n,p,c)
R − Θ

(n,p,c)
L = arctan

(

tan Θ
(n,p,c)
R − tan Θ

(n,p,c)
L

1 + tan Θ
(n,p,c)
R tan Θ

(n,p,c)
L

)

. (4.20)

A large value of ∆Θ(n,p,c) implies that the relative angle between the low and high branches

at the point of their junction M̃c = Mc is also large, and in that sense the kink would be

more pronounced and relatively easier to see.

This definition can be immediately applied to the M
(1,1,0)
T2,max kink that we just discussed.

Substituting the formulas (4.11) and (4.12) for the two branches F
(1,1,0)
L and F

(1,1,0)
R into

– 18 –
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the definitions (4.18), (4.19) and subsequently into (4.20), we obtain an expression for the

size ∆Θ(1,1,0) of the M
(1,1,0)
T2,max kink:

∆Θ(1,1,0) = arctan





M0 (M2
1 − M2

0 ) pT

√

4M2
1 + p2

T

M1 (M2
1 − M2

0 )2 + 2M2
0 M1 (4M2

1 + p2
T )



 . (4.21)

The result (4.21) is illustrated numerically in figure 5(b). As can be seen from (4.21),

∆Θ(1,1,0) depends on the two masses M0 and M1, as well as the size of the ISR pT . However,

since ∆Θ(1,1,0) is a dimensionless quantity, its dependence on those three parameters can

be simply illustrated in terms of the dimensionless ratios pT

M1
and M0

M1
. This is why in

figure 5(b) we plot ∆Θ(1,1,0) (in degrees) as a function of pT

M1
and M0

M1
.

Figure 5(b) confirms that the kink develops at large pT , and is completely absent at

pT = 0, a result which may have already been anticipated on the basis of figure 5(a).

For any given mass ratio M0
M1

, the kink is largest for the hardest possible pT . In the limit

pT → ∞ we obtain

lim
pT→∞

∆Θ(1,1,0) = arctan

(

M2
1 − M2

0

2M0M1

)

, (4.22)

in agreement with the result obtained in [31]. From figure 5(b) one can see that at suffi-

ciently large pT , the ∆Θ(1,1,0) contours become almost horizontal, i.e. the size of the kink

∆Θ(1,1,0) becomes very weakly dependent on pT . A careful examination of the figure reveals

that the asymptotic behavior at pT → ∞ is in agreement with the analytical result (4.22).

Notice that the maximum possible value of any kink of the type (4.15) is ∆Θ
(n,p,c)
max = 90◦.

According to figure 5(b) and eq. (4.22), in the case of ∆Θ(1,1,0) the absolute maximum can

be obtained only in the pT → ∞ and M0 → 0 limit. The former condition will never be

realized in a realistic experiment, while the latter condition makes the observation of the

kink rather problematic, since the “low” branch FL of the M
(1,1,0)
T2,max(M̃0, pT ) function is too

short to be observed experimentally. Therefore, under realistic circumstances, we would

expect the size of the kink ∆Θ(1,1,0) to be only on the order of a few tens of degrees, which

are the more typical values seen in figure 5(b).

According to figure 5(b), for a given fixed pT , the sharpness of the ∆Θ(1,1,0) kink

depends on the mass hierarchy of the particles X1 and X0. When they are relatively

degenerate, i.e. their mass ratio M0
M1

is large, the kink is relatively small. Conversely, when

X0 is much lighter than X1, the kink is more pronounced. The optimum mass ratio M0
M1

which maximizes the kink for a given pT , is rather weakly dependent on the pT , and

for pT → ∞ eventually goes to zero, in agreement with eq. (4.22). However, for more

reasonable values of pT as the ones shown on the left half of the plot, the optimal ratio
M0
M1

varies between 0.3 (at pT ∼ 0) to 0.1 (at pT ∼ 5M1). In this sense, the value of
M0
M1

= 1
3 which was chosen for the illustration in figure 5(a) (as well as figure 9 in ref. [31])

is rather typical.

In conclusion of this subsection, it is worth summarizing the main points from it. The

good news is that the ∆Θ(1,1,0) kink in principle offers a second, independent piece of

information about the masses of the particles X0 and X1. When taken together with the

M
(1,1,0)
T2,max endpoint measurement (4.5), it will allow us to determine both masses M0 and
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M1, in a completely model-independent way. Our analytical results regarding the ∆Θ(1,1,0)

kink complement the study of ref. [31], where this kink was first discovered. However, on

the down side, we should mention that much of our discussion regarding the ∆Θ(1,1,0) kink

may be of limited practical interest, for several reasons. First, as seen in figure 5, the kink

becomes visible only for sufficiently large values of the pT . Since the ISR pT spectrum is

falling rather steeply, one would need to collect relatively large amounts of data, in order to

guarantee the presence of events with sufficiently hard ISR jets. Even then, the collected

events may not contain the momentum configuration required to give the maximum value

of M
(1,1,0)
T2 . An alternative approach to make use of the kink structure would be to measure

the endpoint function M
(1,1,0)
T2,max(M̃0, pT ) for several different pT ranges, and then fit it to

the analytical formula (4.10). Whether and how well this can work in practice, remains

to be seen, but the results of [31] from a toy exercise in the absence of any backgrounds

and detector resolution effects do not appear very encouraging. Nevertheless, while the

kink structure ∆Θ(1,1,0) may be difficult to observe, the measurement (4.5) of the endpoint

M
(1,1,0)
T2,max(M̃0 = 0, pT = 0) should be relatively straightforward. In sections 5.1 and 5.3 we

shall see that the additional MT2 information from events with n = 2 decay chains will

eventually allow us to determine all the unknown masses.

4.2 The subsystem variable M
(2,2,1)
T2

The subsystem variable M
(2,2,1)
T2 is illustrated in figure 4(b), where we use the subchain

within the smaller rectangle on the left. M
(2,2,1)
T2 is a genuine subchain variable in the sense

that we only use the SM decay products x2, and ignore any remaining objects arising from

the two x1’s. In the absence of ISR (pT = 0) one can adapt the results from [32] and show

that the formula for the M
(2,2,1)
T2 endpoint is

M
(2,2,1)
T2,max(M̃1, pT = 0) = µ(2,2,1) +

√

µ2
(2,2,1) + M̃2

1 , (4.23)

where the parameter µ(2,2,1) was defined in eq. (4.1):

µ(2,2,1) ≡
M2

2

(

1 − M2
1

M2
2

)

=
M2

2 − M2
1

2M2
. (4.24)

Almost all of our discussion from the previous section 4.1 can be directly applied here as

well. For example, in order to measure the parameter µ(2,2,1), we only need to extract the

endpoint of a single distribution, for a single fixed value of the test mass M̃1. As before,

we choose to use M̃1 = 0. The resulting endpoint measurement

M
(2,2,1)
T2,max(M̃1 = 0, pT = 0) = 2µ(2,2,1) =

M2
2 − M2

1

M2
(4.25)

provides the required measurement of the parameter µ(2,2,1) appearing in eq. (4.23), as well

as one constraint on the masses M1 and M2 involved in the problem. More importantly, the

new constraint (4.25) is independent of the relation (4.5) found previously in section 4.1.

The new variable M
(2,2,1)
T2 will also exhibit a kink in the plot of its endpoint M

(2,2,1)
T2,max

as a function of the test mass M̃1. This is the same type of kink as the one discussed in
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the previous subsection, therefore all of our previous results would apply here as well. In

particular, the analytical expression for the kink is given by

M
(2,2,1)
T2,max(M̃1, pT ) =







F
(2,2,1)
L (M̃1, pT ) , if M̃1 ≤ M1 ,

F
(2,2,1)
R (M̃1, pT ) , if M̃1 ≥ M1 ,

(4.26)

where

F
(2,2,1)
L (M̃1, pT ) =

{[

µ(2,2,1)(pT ) +

√

(

µ(2,2,1)(pT ) +
pT

2

)2
+ M̃2

1

]2

− p2
T

4

} 1
2

, (4.27)

F
(2,2,1)
R (M̃1, pT ) =

{[

µ(2,2,1)(−pT ) +

√

(

µ(2,2,1)(−pT ) − pT

2

)2
+ M̃2

1

]2

− p2
T

4

}
1
2

, (4.28)

and the pT -dependent parameter µ(2,2,1)(pT ) is defined in analogy to (4.13)

µ(2,2,1)(pT ) = µ(2,2,1)





√

1 +

(

pT

2M2

)2

− pT

2M2



 . (4.29)

The size of the new kink ∆Θ(2,2,1) can be easily read off from eq. (4.21), where one should

make the obvious replacements M0 → M1 and M1 → M2.

We can now generalize the two examples discussed so far (M
(1,1,0)
T2 and M

(2,2,1)
T2 ) to the

case of an arbitrary grandparent index n, with p = n and c = n − 1. We get

M
(n,n,n−1)
T2,max (M̃n−1, pT ) =







F
(n,n,n−1)
L (M̃n−1, pT ) , if M̃n−1 ≤ Mn−1 ,

F
(n,n,n−1)
R (M̃n−1, pT ) , if M̃n−1 ≥ Mn−1 ,

(4.30)

where

F
(n,n,n−1)
L (M̃n−1, pT ) =

{[

µ(n,n,n−1)(pT ) (4.31)

+

√

(

µ(n,n,n−1)(pT ) +
pT

2

)2
+ M̃2

n−1

]2

− p2
T

4

} 1
2

,

F
(n,n,n−1)
R (M̃n−1, pT ) =

{[

µ(n,n,n−1)(−pT ) (4.32)

+

√

(

µ(n,n,n−1)(−pT ) − pT

2

)2
+ M̃2

n−1

]2

− p2
T

4

} 1
2

,

and the pT -dependent parameter µ(n,n,n−1)(pT ) is simply the generalization of eqs. (4.13)

and (4.29):

µ(n,n,n−1)(pT ) = µ(n,n,n−1)





√

1 +

(

pT

2Mn

)2

− pT

2Mn



 . (4.33)

For n = 1 or n = 2, the general formula (4.30) reproduces our previous results (4.10)

and (4.26), correspondingly.
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4.3 The subsystem variable M
(2,2,0)
T2

The variable M
(2,2,0)
T2 is illustrated in figure 4(b), where we use the whole chain within

the larger rectangle. As long as we ignore the effects of any ISR, we have a balanced6

momentum configuration and the analytical results from ref. [32] would apply. In particular,

the endpoint M
(2,2,0)
T2,max(M̃0, pT = 0) is given by [32]

M
(2,2,0)
T2,max(M̃0, pT = 0) =







F
(2,2,0)
L (M̃0, pT = 0) , if M̃0 ≤ M0 ,

F
(2,2,0)
R (M̃0, pT = 0) , if M̃0 ≥ M0 ,

(4.34)

where

F
(2,2,0)
L (M̃0, pT = 0) = µ(2,2,0) +

√

µ2
(2,2,0) + M̃2

0 , (4.35)

F
(2,2,0)
R (M̃0, pT = 0) = µ(2,2,1) + µ(2,1,0) +

√

(

µ(2,2,1) − µ(2,1,0)

)2
+ M̃2

0 , (4.36)

and the various parameters µ(n,p,c) are defined in (4.1). Notice that these expressions are

valid only for pT = 0. We have also derived the corresponding generalized expression for

M
(2,2,0)
T2,max(M̃0, pT ) for arbitrary values of pT , which we list in appendix A.

The most striking feature of the endpoint function (4.34) is that it will also exhibit

a kink ∆Θ(2,2,0) at the true value of the test mass M̃0 = M0. However, as emphasized

in [31], the physical origin of this kink is different from the kinks ∆Θ(1,1,0) and ∆Θ(2,2,1)

which we encountered previously in sections 4.1 and 4.2. This is easy to understand – in

sections 4.1 and 4.2 we saw that the kinks ∆Θ(1,1,0) and ∆Θ(2,2,1) arise due to ISR effects,

while eq. (4.34) holds in the absence of any ISR. The explanation for the ∆Θ(2,2,0) kink has

actually already been provided in [32]. In essence, one can treat the SM decay products x1

and x2 in each chain as a composite particle of variable mass, and the two branches F
(2,2,0)
L

and F
(2,2,0)
R correspond to the two extreme values for the mass of this composite particle.

In spite of its different origin, the kink in the function (4.34) shares many of the

same properties. Let us use a specific example as an illustration. Consider a popular

example from supersymmetry, such as gluino pair-production, followed by sequential two-

body decays to squarks and the lightest neutralinos. This is precisely a cascade of the type

n = 2, in which X2 is the gluino g̃, X1 is a squark q̃, and X0 is the lightest neutralino χ̃0
1.

Let us choose the superpartner masses according to the SPS1a mass spectrum, which was

also used in ref. [32]:

M2 = 613 GeV, M1 = 525 GeV, M0 = 99 GeV. (4.37)

The resulting function M
(2,2,0)
T2,max(M̃0, pT = 0) is plotted in figure 6(a) with the upper set of

lines (compare to figure 12(b) in ref. [32]).

There are several noteworthy features of M
(2,2,0)
T2,max(M̃0, pT = 0) which are evident from

figure 6(a). First, when the test mass M̃0 is equal to the true child mass M0, the MT2

endpoint yields the true parent mass, in this case M2:

M
(2,2,0)
T2,max(M̃0 = M0, pT = 0) = M2 . (4.38)

6In the sense of eq. (4.8). See the discussion following eq. (4.8).

– 22 –



J
H
E
P
0
3
(
2
0
0
9
)
1
4
3

Figure 6. Dependence of the M
(2,2,0)
T2,max and M

(2,1,0)
T2,max upper kinematic endpoints on the value of

the test mass M̃0, for (a) the SPS1a parameter point in MSUGRA: M2 = 613GeV, M1 = 525GeV,

and M0 = 99GeV; or (b) a split spectrum M2 = 2000GeV, M1 = 200GeV, and M0 = 100GeV.

The horizontal (vertical) dotted lines denote the true value of the parent (child) mass for each case.

Solid (dashed) lines indicate true (false) endpoints, while red (blue) lines correspond to F
(n,p,c)
L

(F
(n,p,c)
R ) branches.

This property of MT2 is true by design, and is confirmed by the dotted lines in figure 6(a).

Second, as seen from eq. (4.34), M
(2,2,0)
T2,max(M̃0, pT = 0) is not given by a single function,

but has two separate branches. The first (“low”) branch F
(2,2,0)
L applies for M̃0 ≤ M0,

and is shown in figure 6(a) with red lines. The second (“high”) branch F
(2,2,0)
R is valid

for M̃0 ≥ M0 and is shown in blue in figure 6(a). While the two branches coincide at

M̃0 = M0:

F
(2,2,0)
L (M0, pT = 0) = F

(2,2,0)
R (M0, pT = 0) , (4.39)

their derivatives do not match:
(

∂F
(2,2,0)
L

∂M̃0

)

M̃0=M0

6=
(

∂F
(2,2,0)
R

∂M̃0

)

M̃0=M0

, (4.40)

leading to a kink ∆Θ(2,2,0) in the function M
(2,2,0)
T2,max(M̃0, pT = 0) [29–32]. As before, let us

try to investigate quantitatively the size of this kink. Applying the general definition (4.20),

we obtain

∆Θ(2,2,0) = arctan

(

2(1 − y)(1 − z)
√

yz

(y + z)(1 + yz) + 4yz

)

, (4.41)

where we have defined the squared mass ratios

y ≡ M2
1

M2
2

, z ≡ M2
0

M2
1

. (4.42)

The result (4.41) is plotted in figure 7(a) as a function of the mass ratios
√

y and
√

z.

Figure 7(a) demonstrates that as both y and z become small, the kink ∆Θ(2,2,0) gets more

pronounced. figure 7(a) also shows that the kink ∆Θ(2,2,0) is a symmetric function of y
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Figure 7. The amount of kink: (a) ∆Θ(2,2,0) and (b) ∆Θ(2,1,0) in degrees, as a function of

the mass ratios
√

y and
√

z. The white dot and the white asterisk denote the locations in this

(
√

y,
√

z) parameter space of the two sample spectra (4.37) and (4.55) used for figures 6(a) and 6(b),

correspondingly.

and z, as can also be seen directly from eq. (4.41). Therefore, the kink ∆Θ(2,2,0) will be

best observable in those cases where y and z are both small, and in addition, the mass

spectrum happens to obey the relation7 y = z, i.e. M1 =
√

M0M2. Unfortunately, the

SPS1a study point is rather far from this category — the spectrum (4.37) corresponds to

the values
√

y = 0.856 and
√

z = 0.189, which are indicated in figure 7(a) by a white dot.

This conclusion is also supported by figure 6(a), which shows a rather mild kink in the

SPS1a case.

We shall be rather ambivalent in our attitude toward the ∆Θ(2,2,0) kink as well. While

the interpretation of the kink is straightforward, its observation in the actual experiment

is again an open issue. On the one hand, the experimental precision would depend on

the particular signature, i.e. the type of the SM particles x1 and x2. If those are leptons,

their 4-momenta p
(k)
1 and p

(k)
2 will be measured relatively well and the kink might be

observable. However, when x1 and x2 are jets, the experimental resolution may not be

sufficient. Secondly, as seen in figure 6(a), the kink itself may not be very pronounced, and

its observability will in fact depend on the particular mass spectrum.

The main lesson from the above discussion is that while the existence of the kink is

without a doubt, its actual observation is by no means guaranteed. Therefore, our main

mass measurement method, described later in section 5.1, will not use any information

related to the kink. In fact in section 5.1 we shall show that one can completely reconstruct

the mass spectrum of the new particles, using just measurements of MT2 endpoints, each

done at a single fixed value of the corresponding test mass. It is worth noting that, in

7Notice that for this special value of M1 =
√

M0M2, the upper endpoint of the invariant mass distribution

Mx1x2
is the same as in the case when the intermediate particle X1 is off-shell, i.e. when M1 > M2. Then we

find that the M
(2,2,0)
T2,max formulas and corresponding kink structures are identical in the on-shell and off-shell

cases. For details, see appendix A.
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general, an endpoint in a spectrum is a sharper feature than a kink of the type (4.20).

Therefore, we would expect that the experimental precision on the extracted endpoints

will be much better than the corresponding precision on the kink location. The kink will

also not play any role in our hybrid method, described in section 5.3. Only for the method

described in section 5.2, we shall try to make use of the kink information.

Let us now return to our original discussion of the M
(2,2,0)
T2 endpoint (4.34). Following

our previous approach from sections 4.1 and 4.2, we would choose a fixed value of the

test mass M̃0 and measure the corresponding MT2 endpoint. However, the presence of

two branches (4.35) and (4.36) leads to a slight complication: for a randomly chosen value

of M̃0, we will not know whether we should use (4.35) or (4.36) when interpreting the

endpoint measurement. This requires us to make very special choices for the fixed value of

M̃0, which would remove this ambiguity. It is easy to see that by choosing M̃0 = 0, we can

ensure that the endpoint is always described by the “low” branch (4.35), and the M
(2,2,0)
T2,max

measurement can then be uniquely interpreted as

M
(2,2,0)
T2,max(M̃0 = 0, pT = 0) = 2µ(2,2,0) =

M2
2 − M2

0

M2
. (4.43)

However, we could also design a special choice of M̃0, which would select the “high”

branch (4.35) and again uniquely remove the branch ambiguity. For this purpose, we

must choose a value for the test mass M̃0 which is sufficiently large, in order to safely

guarantee that it is well beyond the true mass M0. Since the true mass M0 can never

exceed the beam energy Eb, one obvious safe and rather conservative choice for M̃0 could

be M̃0 = Eb, in which case from (4.34) we get

M
(2,2,0)
T2,max(M̃0 = Eb, pT = 0) = µ(2,2,1) + µ(2,1,0) +

√

(

µ(2,2,1) − µ(2,1,0)

)2
+ E2

b (4.44)

= M2 −
M2

2

(

M2
1

M2
2

+
M2

0

M2
1

)

+

√

M2
2

4

(

M2
1

M2
2

− M2
0

M2
1

)2

+ E2
b .

Notice that the high branch function F
(2,2,0)
R in eq. (4.36) is rather unique in one very

important aspect: it depends not just on one, but on two mass parameters, namely the

combinations µ(2,2,1) + µ(2,1,0) and µ(2,2,1) − µ(2,1,0). In contrast, the “low” branch F
(2,2,0)
L ,

as well as the previously discussed endpoint functions M
(n,n,n−1)
T2,max (M̃0, pT = 0), each con-

tained a single µ parameter. As a result, in those cases we did not benefit from any extra

measurements for different values of the test mass M̃0 — had we done that, we would have

been measuring the same µ parameter over and over again. However, the situation with

F
(2,2,0)
R is different, and here we will benefit from an additional measurement for a different

value of M̃0. For example, let us choose M̃0 = E′
b, with E′

b > Eb, which will still keep us

on the high branch. We obtain another constraint

M
(2,2,0)
T2,max(M̃0 = E′

b, pT = 0) = µ(2,2,1) + µ(2,1,0) +

√

(

µ(2,2,1) − µ(2,1,0)

)2
+ E′

b
2 (4.45)

= M2 −
M2

2

(

M2
1

M2
2

+
M2

0

M2
1

)

+

√

M2
2

4

(

M2
1

M2
2

− M2
0

M2
1

)2

+ E′
b
2 .
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It is easy to check that the constraints (4.43)–(4.45) are all independent, thus providing

three independent equations8 for the three unknown masses M0, M1 and M2. These three

equations (4.43)–(4.45) can be solved rather easily,9 and one obtains the proper solution

for the masses M0, M1 and M2, up to a two-fold ambiguity:

M2 → M2 , M1 → M0

M1
M2 , M0 → M0 , (4.46)

which is nothing but the interchange y ↔ z at a fixed M2. The ambiguity arises because the

expression (4.34) for the endpoint M
(2,2,0)
T2,max (and consequently, the set of constraints (4.43)–

(4.45)) is invariant under the transformation (4.46). Because of this ambiguity, in addition

to the original SPS1a input values (4.37) for the mass spectrum, we obtain a second solution

M2 = 613 GeV, M1 = 115.6 GeV, M0 = 99 GeV. (4.47)

This second solution was missed in the analysis of ref. [32]. It is easy to check that the

alternative mass spectrum (4.47) gives an identical M
(2,2,0)
T2,max(M̃0, pT = 0) distribution as

the one shown in figure 6(a), so that it is impossible to rule it out on the basis of M
(2,2,0)
T2,max

measurements alone.

The previous discussion reveals an important and somewhat overlooked benefit from

the existence of the kink — one can make not one, not two, but three independent endpoint

measurements from a single M
(n,p,c)
T2 distribution! In fact, we shall argue that the three

measurements (4.43)–(4.45) are much more robust than the kink measurement (4.20). For

example, when the child mass is relatively small, the lower branch F
(2,2,0)
L is relatively

short and the kink will be difficult to see, even under ideal experimental conditions. An

extreme example of this sort is presented in section 5, where we discuss top quark events,

in which the child (neutrino) mass M0 is practically zero and the kink cannot be seen at

all. However, even under those circumstances, the endpoint measurements (4.43)–(4.45)

are still available. More importantly, the constraints (4.43)–(4.45) are independent of the

previously found relations (4.5) and (4.25), so that the latter can be used to resolve the

two-fold ambiguity (4.46).

Before we move on to a discussion of the last remaining subsystem MT2 quantity in the

next section 4.4, let us recap our main result derived in this subsection. We showed that

the M
(2,2,0)
T2 variable yields three independent endpoint measurements (4.43)–(4.45), and

possibly a kink measurement (4.20). The M
(2,2,0)
T2 endpoint measurements by themselves are

sufficient to determine all three masses M0, M1 and M2, up to the two-fold ambiguity (4.46).

This represents a pure MT2-based mass measurement method, which does not use any any

kink or invariant mass information.
8In practice, instead of relying on individual endpoint measurements for three different values of M̃0, one

may prefer to use the experimental information for the whole function M
(2,2,0)
T2,max(M̃0, pT = 0) and simply

fit to it the analytical expression (4.34) for the three floating parameters M0, M1 and M2, as was done in

ref. [32]. As we shall see shortly, this method does not lead to any new information, and may only improve

the statistical error on the mass determination. Therefore, to keep our discussion as simple as possible,

we prefer to talk about the three individual measurements (4.43)–(4.45) as opposed to fitting the whole

distribution (4.34).
9The general solution for M2, M1 and M0 in terms of the measured endpoints (4.43)–(4.45) is rather

messy and not very illuminating, therefore we do not list it here.
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4.4 The subsystem variable M
(2,1,0)
T2

The variable M
(2,1,0)
T2 is illustrated in figure 4(b), where we use the subchain within the

smaller rectangle on the right. This is another genuine subsystem quantity, since we only

use the SM decay products x1 and ignore the upstream objects x2. However, the upstream

objects x2 are important in the sense that they have some non-zero transverse momentum,

and as a result, the sum of the transverse momenta ~P
(k)
0T of the children X0 is not balanced

by the sum of the transverse momenta of the SM objects x1 used in the MT2 calculation:

~P
(1)
0T + ~P

(2)
0T + ~p

(1)
1T + ~p

(2)
1T = −~p

(1)
2T − ~p

(2)
2T − ~pT 6= 0 . (4.48)

Notice that even in the absence of any ISR pT , this is still an unbalanced configuration,

due to the transverse momenta ~p
(1)
2T and ~p

(2)
2T of the upstream objects x2. Therefore, we

cannot use the existing analytical results on MT2, since previous studies always assumed

that the right-hand side of eq. (4.48) is exactly zero, due to the lack of any particles

upstream. We therefore need to generalize the previous treatments of MT2 and obtain

the corresponding endpoint formulas for our new subsystem M
(2,1,0)
T2 variable. The general

mathematical properties of subsystem M
(n,p,c)
T2 variables will be presented in a forthcoming

publication [49]. Here we shall only use the results relevant for our example (n = 2). In

particular, in the absence of any intrinsic ISR (i.e., for pT = 0), we find that the endpoint

of the M
(2,1,0)
T2 distribution is given by

M
(2,1,0)
T2,max(M̃0, pT = 0) =







F
(2,1,0)
L (M̃0, pT = 0) , if M̃0 ≤ M0 ,

F
(2,1,0)
R (M̃0, pT = 0) , if M̃0 ≥ M0 ,

(4.49)

where

F
(2,1,0)
L (M̃0, pT = 0) =

{

[

µ(2,2,0) − µ(2,2,1) +
√

µ2
(2,2,0) + M̃2

0

]2

− µ2
(2,2,1)

}
1
2

, (4.50)

F
(2,1,0)
R (M̃0, pT = 0) =

{

[

µ(2,1,0) +

√

(

µ(2,2,1) − µ(2,1,0)

)2
+ M̃2

0

]2

− µ2
(2,2,1)

} 1
2

,(4.51)

and the various parameters µ(n,p,c) are defined in (4.1). The corresponding expressions for

general pT (i.e., arbitrary intrinsic ISR) are listed in appendix A.

From eq. (4.49) we see that, once again, the endpoint function M
(2,1,0)
T2,max(M̃0, pT = 0)

would exhibit a kink ∆Θ(2,1,0) at the true value of the test mass M̃0 = M0:
(

∂F
(2,1,0)
L

∂M̃0

)

M̃0=M0

6=
(

∂F
(2,1,0)
R

∂M̃0

)

M̃0=M0

. (4.52)

The existence of this kink should come as no surprise — ref. [31] showed (in the pT → ∞
limit) that any type of upstream momentum will generate a kink in an otherwise smooth

MT2,max function. As before, the value of the MT2 endpoint M
(2,1,0)
T2,max at the kink location

reveals the true mass of the parent:

M
(2,1,0)
T2,max(M̃0 = M0, pT = 0) = M1 . (4.53)
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At the same time, the physical origin of this kink is different from either of the two kink

types (∆Θ(1,1,0) and ∆Θ(2,2,0)) discussed earlier. Clearly, the new kink is different from

∆Θ(2,2,0), which was due to the varying invariant mass of the {x1, x2} system. Here we are

using a single SM particle x1 whose mass is constant. Furthermore, the new kink ∆Θ(2,1,0)

cannot be due to any ISR like in the case of ∆Θ(1,1,0), since eq. (4.49) does not account

for any ISR effects. The real reason for this new ∆Θ(2,1,0) kink is a third one, namely, the

kinematical restrictions placed by the decays of the upstream particles (in this case, the

grandparents X2).

We now proceed to investigate the new kink ∆Θ(2,1,0) quantitatively. Using the same

example of gluino pair-production for the SPS1a mass spectrum (4.37), we plot the func-

tion (4.49) in figure 6(a). Comparing the lower and the upper set of lines in the figure,

we notice that the M
(2,1,0)
T2,max and M

(2,2,0)
T2,max variables share several common characteristics.

They both exhibit a kink at the true location of the child mass M̃0 = M0, while their

values at that point reveal the true parent mass in each case: M1 for M
(2,1,0)
T2,max and M2 for

M
(2,2,0)
T2,max. Using the definition (4.20), we find that the size of the ∆Θ(2,1,0) kink is given by

∆Θ(2,1,0) = arctan

(

(1 − y2)(1 − z)
√

z

2z(1 + y2) + y(1 + z2) + 2yz

)

, (4.54)

where the parameters y and z were already defined in (4.42). The kink ∆Θ(2,1,0) is plotted

in figure 7(b) as a function of
√

y and
√

z. We notice that the kink structure becomes more

pronounced for relatively small y and z. Comparing figures 7(a) and 7(b), we see that for

any given set of values for y and z, the ∆Θ(2,1,0) kink discussed here is more pronounced

than the ∆Θ(2,2,0) kink from the previous subsection.10 The difference is particularly

noticeable in the region of
√

y ∼ 0 and
√

z ∼ 0.2. The SPS1a mass spectrum (4.37) in our

previous example was rather far away from this region, as indicated by the white dots in

figure 7. Now let us choose a different mass spectrum, which is closer to the region where

the difference between the two kinks becomes more noticeable, for example

M2 = 2000 GeV, M1 = 200 GeV, M0 = 100 GeV, (4.55)

corresponding to the point marked with the white asterisk in figures 7(a) and 7(b). The

resulting endpoint functions M
(2,2,0)
T2,max and M

(2,1,0)
T2,max are plotted in figure 6(b). Indeed we see

that with this new spectrum the kink in the M
(2,1,0)
T2,max function is much more noticeable than

the kink in the M
(2,2,0)
T2,max function. Therefore, our first conclusion regarding the M

(2,1,0)
T2

variable is that its kink is in general sharper and appears to be more promising than the

previously discussed kink in the M
(2,2,0)
T2 variable from section 4.3.

Following our previous strategy, we shall not dwell too long on the kink, but instead

we shall discuss the available endpoint measurements for various values of M̃0. Again, the

presence of two branches in eq. (4.49) can be used to our advantage. As in section 4.3,

we first choose a test mass value M̃0 = 0, which would “select” the low branch (4.50) and

result in an endpoint measurement

M
(2,1,0)
T2,max(M̃0 = 0, pT = 0) = 2

√

µ(2,2,0) (µ(2,2,0) − µ(2,2,1)) . (4.56)

10This statement can also be verified using the analytical formulas (4.41) and (4.54).
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Just as before, we could also choose a rather large value for M̃0 = Eb, which would select

the high branch (4.51) and result in the measurement

M
(2,1,0)
T2,max(M̃0 = Eb, pT = 0) =

{

[

µ(2,1,0) +

√

(

µ(2,2,1) − µ(2,1,0)

)2
+ E2

b

]2

− µ2
(2,2,1)

}
1
2

.

(4.57)

A third choice, M̃0 = E′
b, with E′

b > Eb, would yield yet another endpoint measurement

M
(2,1,0)
T2,max(M̃0 = E′

b, pT = 0) =

{

[

µ(2,1,0) +

√

(

µ(2,2,1)−µ(2,1,0)

)2
+ E′2

b

]2

− µ2
(2,2,1)

} 1
2

.

(4.58)

Again we obtained three equations (4.56)–(4.58) for the three unknown µ-parameters

µ(2,2,0), µ(2,2,1) and µ(2,1,0), or equivalently, for the three unknown masses M0, M1 and

M2. These equations are all independent and can be easily solved, giving a total of four

solutions. However, three of the solutions are always unphysical, so that we end up with

a single unique solution. This represents an important advantage of the M
(2,1,0)
T2,max variable

in comparison with the M
(2,2,0)
T2,max variable discussed in section 4.3. There we found that

M
(2,2,0)
T2,max always gives rise two a two-fold ambiguity in the mass spectrum, while now we see

that M
(2,1,0)
T2,max does not suffer from this problem and already by itself allows for a complete

and unambiguous determination of the mass spectrum.

5 MT2-based mass measurement methods

In this section we use the analytical results derived in the previous section to propose

three different strategies for determining the masses in n ≤ 2 decay chains. We shall

illustrate each of our methods with a specific example, for which we choose to consider the

dilepton samples from W+W− and tt̄ events. The former is an example of the n = 1 decay

chain exhibited in figure 4(a), while the latter is an example of the n = 2 decay chain in

figure 4(b). Most importantly, these samples already exist in the Tevatron data and will

also be among the first to be studied at the LHC. Correspondingly, throughout this section

we shall use the following mass spectrum

M2 = mt = 173 GeV,

M1 = mW = 80 GeV, (5.1)

M0 = mν = 0 GeV.

Before we begin, let us review the four different M
(n,p,c)
T2 variables which are in principle

available in that case. Each one of them is plotted in figure 8 for five different values of the

corresponding test mass (0, 100, 200, 300 and 400 GeV). In figure 8(a) we show the M
(1,1,0)
T2

variable from W+W− pair production events, while in figures 8(b-d) we correspondingly

show the M
(2,2,1)
T2 , M

(2,2,0)
T2 and M

(2,1,0)
T2 variables from tt̄ events. We used PYTHIA for event

generation and did not impose any selection cuts, since they will not affect the location
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(n,p,c)
T2 variables in dilepton events from (a) W+W−

pair production and (b-d) tt̄ pair production. Each panel shows results for five different values (0,

100, 200, 300 and 400GeV) of the corresponding test mass. The methods of sections 5.1 and 5.3

only make use of the MT2 endpoint at zero test mass, M
(n,p,c)
T2,max(M̃c = 0), which is indicated by

the vertical red arrow. In panel (c), the two dotted line M
(2,2,0)
T2 distributions correspond to the

correct and the wrong pairing of the two b-jets with the leptons, while the solid line distribution is

the average of these two.

of the MT2 endpoint.11 The plots are made for the Tevatron (a pp̄ collider with a 2TeV

center-of-mass energy), where the relevant data is already available. The corresponding

analysis for the LHC is very similar. All of our plots in this section have the full ISR effects.

As discussed in section 4, the presence of ISR with nonzero pT will increase the nominal

M
(n,p,c)
T2 endpoints:

M
(n,p,c)
T2,max(M̃c, pT ) ≥ M

(n,p,c)
T2,max(M̃c, 0) , (5.2)

where the equality is obtained only when M̃c = Mc. ISR will therefore introduce some

11The cuts would have an impact on the overall acceptance and efficiency. This effect is not relevant

here, since we are showing unit-normalized distributions. The cuts may also distort the shape of each

distribution, but should preserve the location of the upper endpoint.
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systematic error when one is trying to measure M
(n,p,c)
T2,max(M̃c, 0). The size of this error

depends on the ISR pT spectrum, which in turn depends on the type of collider (Tevatron

or LHC). At the Tevatron, this will not be such a serious issue, as evidenced from figure 8,

where the observed endpoints in the presence of ISR match pretty well with their expected

values for the pT = 0 case. On the other hand, at the LHC this may become a problem,

which can be handled in one of two ways. First, depending on the particular signature, one

may be able to select a sample with pT ≈ 0 (at a certain cost in statistics), by imposing

a suitably designed jet veto to remove jets from ISR. Alternatively, one can use the full

event sample (which would include ISR jets), and make use of our general formulas in

appendix A, which contain the explicit pT dependence of M
(n,p,c)
T2,max.

In the previous section 4 we derived that in the case of n ≤ 2 cascades, there are 8

different MT2 endpoint measurements: one for M
(1,1,0)
T2,max (see eq. (4.5) and section 4.1),

one for M
(2,2,1)
T2,max (see eq. (4.25) and section 4.2), three for M

(2,2,0)
T2,max (see eqs. (4.43)–(4.45)

and section 4.3), and three for M
(2,1,0)
T2,max (see eqs. (4.56)–(4.58) and section 4.4). Given

that we are trying to determine only three masses M0, M1 and M2, it is clear that these

8 measurements should be sufficient to completely determine the spectrum. We also see

that our previous count (3.8) has actually greatly underestimated the power of MT2, and

the number of available measurements is in fact much larger than the number of M
(n,p,c)
T2,max

variables. Indeed, as shown in sections 4.3 and 4.4, there are cases where we might be able

to obtain more than one mass constraint from a given M
(n,p,c)
T2,max variable. Of course, the 8

measurements cannot all be independent among themselves, as they only depend on three

parameters. Our three methods below will be distinguished based on which subset of these

measurements we are using.

5.1 Pure MT2 endpoint method

With this method, we use MT2 endpoint measurements Enpc at a single fixed value of the

test mass, which for convenience we take to be M̃c = 0:

Enpc ≡ M
(n,p,c)
T2,max(M̃c = 0, pT = 0) . (5.3)

The corresponding formulas interpreting those measurements in terms of the physical

masses M0, M1 and M2 were derived in section 4:

E110 ≡ M
(1,1,0)
T2,max(0, 0) =

M2
1 − M2

0

M1
= M2

√
y (1 − z) , (5.4)

E221 ≡ M
(2,2,1)
T2,max(0, 0) =

M2
2 − M2

1

M2
= M2 (1 − y) , (5.5)

E220 ≡ M
(2,2,0)
T2,max(0, 0) =

M2
2 − M2

0

M2
= M2 (1 − yz) , (5.6)

E210 ≡ M
(2,1,0)
T2,max(0, 0) =

1

M2

√

(M2
2 − M2

0 )(M2
1 − M2

0 ) = M2

√

y(1 − z)(1 − yz) .(5.7)
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Using the mass spectrum (5.1), the predicted locations of these four MT2 endpoints are

E110 = 80 GeV , (5.8)

E221 = 136 GeV , (5.9)

E220 = 173 GeV , (5.10)

E210 = 80 GeV , (5.11)

which are marked with the vertical red arrows in figure 8. Given that we have four mea-

surements (5.4)–(5.7) for only three parameters M0, M1 and M2, one should be able to

uniquely determine all three of the unknown parameters. Naively, it seems that using just

three of the measurements (5.4)–(5.7) should be sufficient for this purpose, and further-

more, that any three of the measurements (5.4)–(5.7) will do the job. However, one should

exercise caution, since not all four measurements (5.4)–(5.7) are independent. It is easy to

check that E221, E220 and E210 obey the following relation

E2
210 = E220 (E220 − E221) . (5.12)

This means that in order to be able to solve for the masses from eqs. (5.4)–(5.7), we must

always make use of the E110 measurement in eq. (5.4), and then we have the freedom

to choose any two out of the remaining three measurements (5.5)–(5.7). For example,

using the set of three measurements {E110, E221, E220} (i.e. eqs. (5.4)–(5.6)), the masses

are uniquely determined as

M0 =
E110

{

E221(E220 − E221)
[

E220 (E220 − E221) − E2
110

]} 1
2

E2
110 − (E220 − E221)2

, (5.13)

M1 =
E110 E221 (E220 − E221)

E2
110 − (E220 − E221)2

, (5.14)

M2 =
E2

110 E221

E2
110 − (E220 − E221)2

. (5.15)

Similarly, one can solve for M0, M1 and M2 using the set of measurements

{E110, E220, E210}, or alternatively, the set of measurements {E110, E221, E210}. In each

case, the remaining fourth unused measurement provides a useful consistency check on the

mass determination.

5.2 MT2 endpoint shapes and kinks

The method proposed in section 5.1 uses the measured endpoints from several different

M
(n,p,c)
T2 variables. Now we discuss an alternative method which makes use of a single

M
(n,p,c)
T2 variable.

Let us begin with the simplest case of n = 1 as shown in figure 4(a). In that case, we

have only one MT2 variable at our disposal, namely M
(1,1,0)
T2 . Its properties were discussed

in section 4.1, where we showed that its endpoint M
(1,1,0)
T2,max can allow the determination of

both masses M0 and M1, at least as a matter of principle. Indeed, the endpoint measure-

ment (5.4) at zero test mass provides one relation among M0 and M1. The key observation
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in section 4.1 (which was first done in [31]) was that with the inclusion of ISR effects, the

endpoint function M
(1,1,0)
T2,max(M̃0, pT ) exhibits a kink at M̃0 = M0, which can then be used

to determine both masses M0 and M1. The method can be readily applied to the exist-

ing dilepton event sample from W+W− pair production, which will allow an independent

measurement of the W mass mW and the neutrino mass mν . While the precision of this

measurement will not be competitive with existing W and neutrino mass determinations,

it is nevertheless useful to test the viability of this approach with real data.

Now let us discuss the more complicated case of n = 2, which in our example cor-

responds to tt̄ pair production with both tops decaying leptonically. As discussed in sec-

tions 4.2, 4.3 and 4.4, here we have a choice of three different MT2 variables: M
(2,2,1)
T2 ,

M
(2,2,0)
T2 , and M

(2,1,0)
T2 . Because of the larger tt̄ cross-section, we expect that the statistical

precision on each one of those three variables will be better than the M
(1,1,0)
T2 variable of

the n = 1 case. As shown in sections 4.3 and 4.4, each of the two variables M
(2,2,0)
T2 and

M
(2,1,0)
T2 exhibits a kink in its endpoint M

(n,p,c)
T2,max when considered as a function of the test

mass M̃0, even when the transverse momentum of the intrinsic ISR in the event is zero,

pT = 0. Then, which of these two variables is better suited for a mass determination? The

case of M
(2,2,0)
T2,max(M̃0, pT = 0) was already discussed in [29, 31, 32]. Here we would like to

propose the alternative measurement of M
(2,1,0)
T2,max(M̃0, pT = 0). What is more, we would

like to emphasize that our function M
(2,1,0)
T2,max(M̃0, pT = 0) offers several unique advantages

over the previously considered case of M
(2,2,0)
T2,max(M̃0, pT = 0):

1. The subsystem variable M
(2,1,0)
T2 does not suffer from the combinatorics problem which

is present for M
(2,2,0)
T2 . Indeed, when constructing the M

(2,2,0)
T2 distribution, one has

to decide how to pair up the b-jets with the two leptons. Because it is difficult to

distinguish between a b and a b̄, there is a two-fold ambiguity which is quite difficult

to resolve by other means. In contrast, our subsystem variable M
(2,1,0)
T2 does not make

direct use of the b-jets, and is therefore free of such combinatorics issues.

2. As we already saw in section 4.3, even under perfect experimental conditions, the fit

to the M
(2,2,0)
T2,max endpoint results in two separate solutions for the mass spectrum: one

solution (see (4.37)) is given by the true values of the input masses, while the second

solution (see (4.47)) is obtained by the transformation (4.46). Using M
(2,2,0)
T2,max alone,

there is no way to tell the difference between these two mass spectra. In contrast,

our variable M
(2,1,0)
T2 does not suffer from this ambiguity, and according to our results

from section 4.4 the solution is always unique.

3. The third advantage of the subsystem variable M
(2,1,0)
T2 is related to the expected

precision on the determination of the masses. As we pointed out in section 4.4 and il-

lustrated explicitly in figure 7, the kink ∆Θ(2,1,0) in the M
(2,1,0)
T2,max(M̃0, pT = 0) function

is much sharper than the corresponding kink ∆Θ(2,2,0) in the M
(2,2,0)
T2,max(M̃0, pT = 0)

function. This can also be seen explicitly from the two examples shown in figure 6.

As a result, we expect that the kink structure can be better identified in the case of

M
(2,1,0)
T2,max, which would lead to smaller errors on the mass determination.
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Of course, one could (and in fact should) use the experimental information from both

M
(2,2,0)
T2,max and M

(2,1,0)
T2,max, if available. Our main goal here is simply to point out the obvi-

ous advantages of the subsystem variable M
(2,1,0)
T2 , which so far has not been used in the

literature.

5.3 Hybrid method: MT2 endpoints plus an invariant mass endpoint

As discussed in section 2.1, any cascade with n ≥ 2 will provide a certain number of

measurements (2.5) in addition to the MT2 measurements discussed so far. In particular,

for the n = 2 example considered here, there will be one measurement of the endpoint of

the Mx1x2 invariant mass distribution. The formula for the endpoint Mx1x2,max in terms

of the unknown physical masses M0, M1 and M2 is in general given by

Eim ≡ Mx1x2,max =
1

M1

√

(

M2
2 − M2

1

) (

M2
1 − M2

0

)

= M2

√

(1 − y)(1 − z) . (5.16)

In the case of tt̄ events considered here, this is simply the endpoint of the invariant mass dis-

tribution mbℓ of each lepton and its corresponding b-jet. This distribution (unit-normalized)

is shown in figure 9. Unfortunately, here one is facing the same combinatorial problem as

with the M
(2,2,0)
T2 variable — we cannot easily tell the charge of the b-jet, therefore a priori

it is not clear which b-jet goes with which lepton. Fortunately, there are only two possibil-

ities: the result from the correct (wrong) pairing is shown in figure 9 with the green (blue)

dotted line. We see that the green histogram with the correct pairing has an endpoint at

the expected location

Eim =

√

(

m2
t − m2

W

) (

m2
W − m2

ν

)

m2
W

= 153.4 GeV , (5.17)

with a relatively small tail due to the finite width effects. More importantly, the (blue)

distribution from the wrong pairings is relatively smooth, and as a result the endpoint (5.17)

is preserved in the experimentally observable (red) distribution, which includes all possible

bℓ pairings.

Now we can add the new measurement (5.16) to the previously discussed set of mea-

surements (5.4), (5.7). We obtain a total of five measurements for the three underlying

parameters M0, M1 and M2, therefore there exist two relations among the measurements.

The first relation is already given by (5.12) and does not involve the invariant mass end-

point (5.16). The second relation is given by

E2
im =

E221E
2
110

E220 − E221
. (5.18)

We can now consider a hybrid method, which would make use of the invariant mass end-

point (5.16), plus any two of the MT2 measurements (5.4)–(5.7). In principle, one again

needs to be careful and make sure that the three used measurements are independent.

Fortunately, as seen from eqs. (5.12), (5.18), the invariant mass endpoint Eim is indepen-

dent from any pair of MT2 measurements. There are 6 possible pairs among the MT2

– 34 –



J
H
E
P
0
3
(
2
0
0
9
)
1
4
3

Figure 9. Unit-normalized mbℓ invariant mass-squared distributions in dilepton tt̄ events. The

green (blue) dotted line corresponds to the correct (wrong) pairing of the leptons and the b-jets,

while the red solid line is the average of those two distributions. The endpoint (5.16) of the mbℓ

distribution is marked by the vertical red arrow.

measurements (5.4)–(5.7), and in principle each one can be used in combination with the

invariant mass endpoint (5.16). What is the best choice? We find that in all 6 of those

cases one obtains a unique solution for the masses M0, M1 and M2. Therefore, the optimal

choice is dictated by the experimental precision on each of the measurements (5.4)–(5.7).

We expect that the measurement (4.3) of M
(1,1,0)
T2,max will be less precise due to the smaller

cross-section for W+W− production. Similarly, M
(2,2,0)
T2,max suffers from the combinatorial

problem already mentioned earlier. Therefore for our illustration of the hybrid method we

choose to use the M
(2,2,1)
T2 endpoint (5.5), the M

(2,1,0)
T2 endpoint (5.7), and the invariant

mass endpoint (5.16). The solution for the masses in terms of those three measurements

is given by

M0 =

√
2E221 Eim

(

2E221E
2
210 + E221E

2
im − E2

im

√

E2
221 + 4E2

210

) 1
2

E2
221 + 2E2

im − E221

√

E2
221 + 4E2

210

, (5.19)

M1 =

√
2 E221 Eim

(

E221

√

E2
221 + 4E2

210 − E2
221

)
1
2

E2
221 + 2E2

im − E221

√

E2
221 + 4E2

210

, (5.20)

M2 =
2E221E

2
im

E2
221 + 2E2

im − E221

√

E2
221 + 4E2

210

. (5.21)

It is easy to check that substituting the measured values of the endpoints E221, E210 and

Eim from (5.9), (5.11) and (5.17), into the three equations above yields the values for the
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neutrino, W and top quark mass, correspondingly. Notice that this determination was done

in a completely model-independent fashion and without any prior assumptions, unlike the

analysis of ref. [40], which made use the known values of the W and/or neutrino masses.

Before concluding this section, we should emphasize again that the W+W− and tt̄ data

required to test each of the three methods described in this section, already exists at the

Tevatron. Therefore we use this opportunity to encourage the CDF and D0 collaborations

to perform a model-independent mass determination analysis along the lines presented here.

6 Summary and conclusions

In this section we shall briefly summarize our main results.

• We compared the three main methods previously proposed for mass measurements in

cascade decays with semi-invisibly decaying particles. We showed that the endpoint

method (section 2.1) and the polynomial method (section 2.2) are able to completely

determine the mass spectrum only if the decay chain is sufficiently long, namely n ≥ 3.

The same conclusion applies if we consider a hybrid combination of the endpoint and

polynomial methods. As a corollary, when the decay chain happens to be relatively

short, n ≤ 2, these two methods are not sufficient, and one must somehow resort to

the third, MT2, method, in order to completely pin down the mass spectrum. Then

in section 2.3 we argued that the MT2 method by itself is sufficient for a complete

mass spectrum determination, even in the problematic cases of n = 1 or n = 2. In

section 5 we backed our claim with two explicit examples: W+W− pair production,

which is an example of an n = 1 chain, and tt̄ pair production, which is an example

of an n = 2 chain. We showed that the MT2 method in principle provides more

than enough measurements for the unambiguous determination of the complete mass

spectrum.

• When applying the MT2 method, we generalized the concept of MT2 by introducing

various subsystem (or subchain) M
(n,p,c)
T2 variables. The latter are defined similarly to

the conventional MT2 variable, but are labelled by three integers n, p, and c, whose

meaning is as follows. The integer n labels the “grandparent” particle originally

produced in the hard scattering and initiating the decay chain. We then apply the

usual MT2 concept to the subchain starting at the “parent” particle labelled by p and

terminating at the “child” particle labelled by c. In general, the “child” particle does

not have to be the very last (i.e. the missing) particle in the decay chain, just like the

“parent” particle does not have to be the very first particle produced in the event.

The introduction of the M
(n,p,c)
T2 subchain variables greatly proliferates the number

of available MT2-type measurements, and allows us to make full use of the power of

the MT2 concept.

• In section 4 and appendix A we provided analytical expressions for the endpoints

of all n ≤ 2 subsystem M
(n,p,c)
T2 variables, as a function of the corresponding test

mass M̃c, and for arbitrary values of the ISR pT . Such results for general pT are
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being presented here for the first time. Only some special cases of our results have

so far appeared in the literature, for example the functions M
(1,1,0)
T2 (M̃0, pT = 0) and

M
(2,2,0)
T2 (M̃0, pT = 0) were already derived in [32], from where one could also deduce

the form of M
(2,2,1)
T2 (M̃1, pT = 0). Our result for M

(2,1,0)
T2 (M̃0, pT = 0) discussed in

section 4.4 is also new.

• In section 4 we showed that the endpoint functions M
(n,p,c)
T2 (M̃c, pT ) may exhibit up to

three different types of kinks. All three kinks appear in the same location: M̃c = Mc,

at which point the value of the subchain endpoint M
(n,p,c)
T2,max coincides with the true

parent mass:

M
(n,p,c)
T2,max(M̃c = Mc, pT ) = Mp . (6.1)

(This equation generalizes eqs. (4.7), (4.38) and (4.53).) However, the physical origin

of each type of kink is different.

1. The first type of kink was originally identified in [30, 31] and arises solely as

an ISR effect, so that in principle it should always be present at some level.

The sharpness of this kink depends on the transverse momentum pT of the

ISR objects. This particular kink type was responsible for the kink feature

∆Θ(1,1,0) observed in our very first and simplest example in section 4.1. There

we generalized the existing analytical formulas for the endpoint M
(1,1,0)
T2,max by

including the effects of the ISR. This in turn allowed us to analyze the amount

of kink ∆Θ(1,1,0) as a function of the ISR pT and the mass spectrum, see figure 5.

2. The second type of kink, encountered in section 4.3, was originally discovered

in [29, 32] and is due to the variable mass of the composite system of visible

(SM) particles used in the MT2 calculation. To be more precise, this type of

kink requires the following relation between the parent and child indices:

p > c + 1 , (6.2)

and does not require any ISR, i.e. it is present even when pT = 0. Among the

four M
(n,p,c)
T2 variables discussed in section 4, only M

(2,2,0)
T2 satisfies this condition.

Not surprisingly, we encountered this kink during our discussion of the M
(2,2,0)
T2,max

endpoint in section 4.3. There we quantified the amount of kink ∆Θ(2,2,0) as a

function of the mass spectrum, as shown in figure 6(a).

3. The third type of kink, which we encountered in section 4.4 during our discussion

of the M
(2,1,0)
T2 variable, is new, and to the best of our knowledge has not been

discussed in the existing literature.12 This kink arises due to the decays of

heavier particles above the parent level and exists even in the absence of any

12Ref. [48] considered the decay chain q̃ → χ̃0
2 → ℓ̃ → χ̃0

1 and used the two leptons to form an MT2

variable which in our notation would correspond to M
(3,2,0)
T2 , i.e. n = 3, p = 2 and c = 0. Since this case

satisfies both conditions (6.2) and (6.3), the kink observed in [48] is a combination of the second and third

kink types according to our classification.
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ISR: its presence simply requires the following relation between the grandparent

and parent indices

n > p , (6.3)

while the child index c is arbitrary. Because of the upstream objects, this situ-

ation does not correspond to the balanced momentum configuration discussed

in [28, 32]. Therefore, the analytical expressions for MT2 derived in those two

papers are not applicable and will need to be generalized [49]. In general, there

are two sources of momentum imbalance in this case: upstream objects from

grandparent decays, as well as genuine ISR with pT 6= 0. In section 4.4 we con-

centrated on the former effect and provided analytical expressions for the end-

point function M
(2,1,0)
T2,max(M̃0, pT = 0) and the associated kink ∆Θ(2,1,0), which

allowed us to quantify the sharpness of the kink as a function of the mass spec-

trum, see figure 6(b). Comparing figure 6(b) to figure 6(a), we saw that the

new kink ∆Θ(2,1,0) is in general much more pronounced, and therefore offers

better prospects for experimental detection. The corresponding formulas for

the more general case, when both grandparent decay products and genuine ISR

with arbitrary pT are present, are listed in appendix A.

Of course, there are cases when two or even all three of these kinks will be simul-

taneously present. For example, M
(2,2,0)
T2,max(M̃0, pT 6= 0) will exhibit kinks 1 and 2,

M
(2,1,0)
T2,max(M̃0, pT 6= 0) will exhibit kinks 1 and 3, while M

(3,2,0)
T2,max(M̃0, pT 6= 0) will

exhibit all three: 1, 2 and 3.

• Our MT2 analysis in section 4 revealed that in the case of an n ≤ 2 cascade, there

exist 8 different measurements of subsystem MT2 endpoints

1. One measurement (4.5) of the endpoint M
(1,1,0)
T2,max at zero test mass M̃0.

2. One measurement (4.25) of the endpoint M
(2,2,1)
T2,max at zero test mass M̃1.

3. One measurement (4.43) of the endpoint M
(2,2,0)
T2,max at zero test mass M̃0.

4. Two measurements (4.44) and (4.45) of the endpoint M
(2,2,0)
T2,max at two large values

(Eb and E′
b) of the test mass M̃0.

5. One measurement (4.56) of the endpoint M
(2,1,0)
T2,max at zero test mass M̃0.

6. Two measurements (4.57) and (4.58) of the endpoint M
(2,1,0)
T2,max at two large values

(Eb and E′
b) of the test mass M̃0.

In addition, we also have one measurement of the endpoint (5.16) of the invariant mass

distribution Mx1x2 , bringing the total number of available endpoint measurements to

9. Given that an n = 2 chain contains only three unknown masses M0, M1 and M2, it

should be clear that the spectrum can be fully determined. In section 5 we proposed

three different methods for mass determinations, depending on what subsets of all

those measurements one decides to use. For example, the pure MT2 endpoint method

of section 5.1 makes use of different M
(n,p,c)
T2,max(M̃c = 0) endpoint measurements at zero
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test mass. The method of section 5.2 makes use of a single M
(n,p,c)
T2,max(M̃c) function,

measured at different values of M̃c. Finally, the hybrid method of section 5.3 combines

some of the M
(n,p,c)
T2,max(M̃c = 0) endpoint measurements at zero test mass with the

invariant mass endpoint Mx1x2,max.

In conclusion, our work shows that, at least as a matter of principle, the MT2 concept,

when properly generalized to include the subsystem variables M
(n,p,c)
T2 , can allow the mea-

surement of the masses of all particles in SUSY-like events with arbitrary decay chains at

hadron colliders.
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A Analytical expressions for M
(n,p,c)
T2,max(M̃c, pT )

The purpose of this appendix is to collect in one place all relevant formulas for the various

subsystem MT2 endpoints M
(n,p,c)
T2,max(M̃c, pT ) in the presence of initial state radiation (ISR)

with arbitrary transverse momentum pT . In all cases, we will find that M
(n,p,c)
T2,max(M̃c, pT )

is given by two branches:

M
(n,p,c)
T2,max(M̃c, pT ) =







F
(n,p,c)
L (M̃c, pT ) , if M̃c ≤ Mc ,

F
(n,p,c)
R (M̃c, pT ) , if M̃c ≥ Mc .

(A.1)

In what follows we shall list the analytic expressions for each branch F
(n,p,c)
L and F

(n,p,c)
R ,

for all possible (n, p, c) cases with n − c ≤ 2. The grandparents Xn, the parents Xp and

the children Xc are always assumed to be on-shell. However, any intermediate particles

Xm with n > m > p or p > m > c may or may not be on-shell, and the two cases

will have to be treated differently. Such an example is provided by the endpoint function

M
(n,n,n−2)
T2,max (M̃n−2, pT ) discussed below in section A.2. For convenience, our results will be

written in terms of the mass parameters µ(n,p,c) defined in (4.1)

µ(n,p,c) ≡
Mn

2

(

1 − M2
c

M2
p

)

. (A.2)

These parameters represent certain combinations of the masses of the grandparents (Mn),

parents (Mp) and children (Mc), and do not contain any dependence on the ISR transverse

momentum pT . As we discussed in sections 4 and 5, these are generally the quantities

which are directly measured by experiment. Therefore, with the MT2 method, the goal
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of any experiment would be to perform a sufficient number of µ-parameter measurements

and then from those to determine the particle masses themselves.

In some special cases, namely n = p, we shall also define pT -dependent µ parameters,

where the pT dependence is explicitly shown as an argument:

µ(n,n,c)(pT ) = µ(n,n,c)





√

1 +

(

pT

2Mn

)2

− pT

2Mn



 . (A.3)

When pT = 0, the pT -dependent parameters (A.3) simply reduce to the pT -independent

ones (A.2):

µ(n,n,c)(pT = 0) = µ(n,n,c) . (A.4)

We also remind the reader that test masses for the children are denoted with a tilde: M̃c,

while the true mass of any particle does not carry a tilde sign.

A.1 The subsystem variable M
(n,n,n−1)
T2,max (M̃n−1, pT )

The corresponding expressions were already given in eqs. (4.32) and (4.33) and we list them

here for completeness:

F
(n,n,n−1)
L (M̃n−1, pT ) =

=







[

µ(n,n,n−1)(pT ) +

√

(

µ(n,n,n−1)(pT ) +
pT

2

)2
+ M̃2

n−1

]2

− p2
T

4







1
2

, (A.5)

F
(n,n,n−1)
R (M̃n−1, pT ) =

=







[

µ(n,n,n−1)(−pT ) +

√

(

µ(n,n,n−1)(−pT ) − pT

2

)2
+ M̃2

n−1

]2

− p2
T

4







1
2

, (A.6)

where the pT -dependent parameter µ(n,n,n−1)(pT ) was already defined in (A.3):

µ(n,n,n−1)(pT ) = µ(n,n,n−1)





√

1 +

(

pT

2Mn

)2

− pT

2Mn



 . (A.7)

As already mentioned in section 4.1, the left branch F
(n,n,n−1)
L corresponds to the momen-

tum configuration
(

~p
(1)
nT ↑↑ ~p

(2)
nT

)

↑↑ ~pT , while the right branch F
(n,n,n−1)
R corresponds to

(

~p
(1)
nT ↑↑ ~p

(2)
nT

)

↑↓ ~pT .

A.2 The subsystem variable M
(n,n,n−2)
T2,max (M̃n−2, pT )

In this case there is an intermediate particle Xn−1 between the parent Xn and the child

Xn−2 (see figures 1 and 3). Our formulas below are written in such a way that they can

be applied both in the case when the intermediate particle Xn−1 is on shell (Mn > Mn−1)

and in the case when Xn−1 is off-shell (Mn−1 ≥ Mn).
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In both cases (off-shell or on-shell) we find that the left branch of M
(n,n,n−2)
T2,max (M̃n−2, pT )

is given by

F
(n,n,n−2)
L (M̃n−2, pT ) =







[

µ(n,n,n−2)(pT ) +

√

(

µ(n,n,n−2)(pT )+
pT

2

)2
+M̃2

n−2

]2

− p2
T

4







1
2

,

(A.8)

where the pT -dependent parameter µ(n,n,n−2)(pT ) was already defined in (A.3):

µ(n,n,n−2)(pT ) = µ(n,n,n−2)





√

1 +

(

pT

2Mn

)2

− pT

2Mn



 . (A.9)

The right branch F
(n,n,n−2)
R is given by three different expressions, depending on the mass

spectrum and the size of the ISR pT :

F
(n,n,n−2)
R (M̃n−2, pT ) = (A.10)

=























F
(n,n,n−2)
L (M̃n−2,−pT ) , if pT >

M2
n−M2

n−2

Mn−2
,

F
(n,n,n−2)
R,off (M̃n−2, pT ) , if pT ≤ M2

n−M2
n−2

Mn−2
and ∆Mn,n−2(pT ) ≤ Mxn−1xn,max ,

F
(n,n,n−2)
R,on (M̃n−2, pT ) , if pT ≤ M2

n−M2
n−2

Mn−2
and ∆Mn,n−2(pT ) ≥ Mxn−1xn,max .

Here ∆Mn,n−2(pT ) is a pT -dependent mass parameter defined as

∆Mn,n−2(pT ) ≡







[√

M2
n +

p2
T

4
− Mn−2

]2

− p2
T

4







1
2

, (A.11)

which in the limit pT → 0 reduces to

∆Mn,n−2(pT = 0) = Mn − Mn−2, (A.12)

justifying its notation. Notice that ∆Mn,n−2(pT ) is always well-defined, since it is only

used when the condition pT ≤ (M2
n − M2

n−2)/Mn−2 is satisfied and the expression under

the square root in (A.11) is nonnegative. The other mass parameter appearing in (A.10),

Mxn−1xn,max, is the familiar endpoint of the invariant mass distribution of the {xn−1, xn}
SM particle pair:

Mxn−1xn,max ≡







1
Mn−1

√

(M2
n − M2

n−1)(M
2
n−1 − M2

n−2) , if Mn−1 < Mn ,

Mn − Mn−2 , if Mn−1 ≥ Mn .
(A.13)

For example, in the special case of n = 2 and the intermediate particle X1 on-shell,

eq. (A.13) reduces to eq. (5.16). The two expressions F
(n,n,n−2)
R,off and F

(n,n,n−2)
R,on appear-
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ing in (A.10) are given by

F
(n,n,n−2)
R,off (M̃n−2, pT ) =







[

M̃n−2 +

√

∆M2
n,n−2(pT ) +

p2
T

4

]2

− p2
T

4







1
2

, (A.14)

F
(n,n,n−2)
R,on (M̃n−2, pT ) (A.15)

=







[

√

M2
xn−1xn,max + p2

vis(pT ) +

√

M̃2
n−2 +

(

pvis(pT ) − pT

2

)2
]2

− p2
T

4







1
2

,

where ∆Mn,n−2(pT ) and Mxn−1xn,max were already defined in (A.11) and (A.13), corre-

spondingly. The subscripts “off” and “on” in eqs. (A.14) and (A.16) can be understood

as follows. When the intermediate particle Xn−1 is off-shell and Mn−1 ≥ Mn, from (A.11)

and (A.13) we get

∆M2
n,n−2(pT ) = M2

n + M2
n−2 − 2MnMn−2

√

1 +
p2

T

4M2
n

≤ (Mn − Mn−2)
2 = M2

xn−1xn,max.

(A.16)

Now returning to the logic of eq. (A.10), we see that in the off-shell case at low pT one

would always use the expression F
(n,n,n−2)
R,off (M̃n−2, pT ) defined in eq. (A.14), and never its

alternative F
(n,n,n−2)
R,on (M̃n−2, pT ) from eq. (A.16). To put it another way, the expression

F
(n,n,n−2)
R,on (M̃n−2, pT ) in eq. (A.16) is only relevant when the intermediate particle Xn−1

is on-shell.

Finally, the quantity pvis(pT ) appearing in eq. (A.16) is a shorthand notation for the

total transverse momentum of the visible particles xn and xn−1 in each leg:

pvis ≡ |~p (k)
nT + ~p

(k)
(n−1)T | .

In the case relevant for F
(n,n,n−2)
R,on , the value of pvis is given by

pvis(pT ) ≡ (µ(n,n,n−1) +µ(n,n−1,n−2))
pT

2Mn

+ |µ(n,n,n−1)−µ(n,n−1,n−2)|
√

1 +
p2

T

4M2
n

. (A.17)

It is easy to check that in the limit of pT → 0 our eqs. (A.8) and (A.10) reduce to the

known results for the case of no ISR (eqs. (70) and (74) in ref. [32]).

The left branch F
(n,n,n−2)
L in (A.8) corresponds to the momentum configuration

(

~p
(k)
nT + ~p

(k)
(n−1)T

)

↑↑ ~pT ,

while the right branch F
(n,n,n−2)
R in (A.10) corresponds to

(

~p
(k)
nT + ~p

(k)
(n−1)T

)

↑↓ ~pT .

In the latter case, F
(n,n,n−2)
R,off is obtained when Xn−2 is at rest: P

(k)
(n−2)T = 0, while F

(n,n,n−2)
R,on

corresponds to the case when P
(k)
(n−2)T = 1

2pT − pvis(pT ).
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A.3 The subsystem variable M
(n,n−1,n−2)
T2,max (M̃n−2, pT )

Here we generalize our pT = 0 result (4.49) from section 4.4 to the case of arbitrary ISR pT :

F
(n,n−1,n−2)
L (M̃n−2, pT ) = (A.18)

=









µ(n−1,n−1,n−2)(p̂T ) +

√

(

µ(n−1,n−1,n−2)(p̂T )+
p̂T

2

)2

+M̃2
n−2





2

− p̂2
T

4







1
2

,

F
(n,n−1,n−2)
R (M̃n−2, pT ) = (A.19)

=









µ(n−1,n−1,n−2)(−p̂T )+

√

(

µ(n−1,n−1,n−2)(−p̂T )− p̂T

2

)2

+M̃2
n−2





2

− p̂2
T

4







1
2

,

where we have introduced the shorthand notation

p̂T ≡ pT + 2µ(n,n,n−1)(pT ) . (A.20)

Notice that the second term on the right-hand side contains the pT -dependent µ parameter

defined in (A.7).

The left branch F
(n,n−1,n−2)
L in (A.18) corresponds to the momentum configuration

~p
(k)
(n−1)T ↑↑

(

~p
(k)
nT ↑↑ ~pT

)

,

while the right branch F
(n,n−1,n−2)
R in (A.19) corresponds to

~p
(k)
(n−1)T ↑↓

(

~p
(k)
nT ↑↑ ~pT

)

.

It is worth checking that our general pT -dependent results (A.18) and (A.19) reduce

to our previous formulas (4.50) and (4.51) in the pT → 0 limit and in the special case of

n = 2. First taking the limit pT → 0 from (A.20) and (A.7) we get

lim
pT→0

p̂T = 2µ(n,n,n−1) , (A.21)

lim
pT →0

µ(n−1,n−1,n−2)(p̂T ) = µ(n−1,n−1,n−2)(2µ(n,n,n−1)) = µ(n,n,n−2) − µ(n,n,n−1) , (A.22)

lim
pT→0

µ(n−1,n−1,n−2)(−p̂T ) = µ(n−1,n−1,n−2)(−2µ(n,n,n−1)) = µ(n,n−1,n−2) . (A.23)

Substituting (A.21)–(A.23) into (A.18) and (A.19), we get

F
(n,n−1,n−2)
L (M̃n−2, pT = 0) = (A.24)

=

{

[

µ(n,n,n−2) − µ(n,n,n−1) +
√

µ2
(n,n,n−2) + M̃2

n−2

]2

− µ2
(n,n,n−1)

}
1
2

,

F
(n,n−1,n−2)
R (M̃n−2, pT = 0) = (A.25)

=

{

[

µ(n,n−1,n−2) +

√

(

µ(n,n,n−1) − µ(n,n−1,n−2)

)2
+ M̃2

n−2

]2

− µ2
(n,n,n−1)

}
1
2

,

which are nothing but the generalizations of (4.50) and (4.51) for arbitrary n.
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